The NESCAUM Method of Estimating Aircraft Emissions

Presentation to the OTC Mobile Source Committee December 5, 2001 Baltimore-Washington International Airport

> Ingrid Ulbrich Environmental Analyst NESCAUM

Presentation Outline

- The standard method for calculating aircraft emissions
- The need for an alternative to EDMS
- Differences between the NESCAUM Model and EDMS
- Differences between EDMS and NESCAUM inputs
- Airports studied and results

The Landing and Takeoff (LTO) Cycle

What is the Mixing Height?

Default Time-in-Mode for 3000 foot Mixing Height

	Commercial	Air Taxi	General	Changes
	Aircraft		Aviation	with
(time in				Mixing
minutes)				Height
Takeoff	0.7	0.5	0.3	No
Climbout	2.2	2.5	5.0	Yes
Approach	4.0	4.5	6.0	Yes
Taxi/Idle	26.0	26.0	16.0	No

Equation for Aircraft Emissions

Emissions for one engine

Emissions for one aircraft

Annual emissions for each aircraft

> **Total Airport** Emissions

Presentation Outline

The general method for calculating aircraft emissions

The need for an alternative to EDMS

EDMS Simplifies the Airport Fleet Mix

★ EDMS

- One engine assigned to each aircraft
 - e.g., Boeing 757-200 can be outfit with any of four engine types
- Same engine used for all aircraft at an airport
- Difficult to use
- LTO and aircraft fleet mix data are available at a finer level of detail

Presentation Outline

The general method for calculating aircraft emissions

The need for an alternative to EDMS

Differences between the NESCAUM Model and EDMS

Key Differences Between the NESCAUM Model and EDMS

Weighted averages of the engines used on each airline's fleet of aircraft

- Continental's Boeing 727-200s
 4 engine models on 9 planes
- Continental's Boeing 737-300s

2 engine models on 65 planes

and FedEx's Airbus 310-200s
 4 engine models on 40 planes

Detailed LTO data is available for every airport

<bos< th=""><th>ΓΟΝ</th></bos<>	ΓΟΝ
---------------------------------	-----

%AIR TRANSPORT	%TOTAL	%*DC-8-62	8	90	38	38
8	8	%*DC-8-71	8	90	98	98
8	8	%*DC-8-63	8	90	2%	28
8	00	% ALL TYPES	8	90	14%	14%
%AIRTRAN	%TOTAL	% B-737-100/200	8	237%	8	237%
8	00	% DC-9-30	8	1,868%	8	1,868%
8	00	% ALL TYPES	8	2,105%	8	2,105%
%AMERICA WEST	%TOTAL	% B-757-200	8	29%	2%	31%
8	00	% A-320-200	8	2,425%	48	2,429%
8	90	% A-319	8	600%	8	600%
00	S	% ALL TYPES	S	3,054%	68	3,060%

Key Differences Between the NESCAUM Model and EDMS (cont.)

	C	D	Z	AA	AB	AC	AD	AE					
89							22404		Іт	7 ~ ~ ~ ~			
90			Continenta	Co(ntinenta	aCo(ntinental	Delta	DHL	Eastwind	1 1	lasy			
91	Aire	craft		Express	Micronesia			-		J			
92		P79.534.		100000000000000000000000000000000000000					l ← snre	adshe	>t		
93	B-72	27-100	88	88	88	XX	XX	88	spic	ausiic			
94	DC-	-9-30	5	88	88	XX	XX	88	•				
95	FOKK	ER 100	88	88	XX	XX	88	XX	1	nput			
96	ME	D-80	6115	88	XX	2164	88	88		T			
97	B-72	7-200		88	0	9230	XX	88					
98	B-75	7-200	149	88	0	4336	88	88					
99	L-1011/	100/20	XX	88	88	292	88	88					
100	EMBR/	AER-145	88	190	XX	**	88	22					
101	B-73	7-500	580	88	88	XX	XX	88					
102	B-73	7-300	2042	88	0	0	XX	384					
103	737-8	00/900	88	88	XX	1	88	88					
104	B-737-	100/200	0	88	XX	6663	88	677					
105	B-76	7-300	88	88	88	1261	XX	- 88		CO	HC	NOx	\$02
106	B-76	7-200	88	88	88	647	88	88			II.C.	HOA	
107	M	D-11	XX	88	88	0	88	88					
108	E-101	11-500	88	88	22	778	88	22	Domestic Flights:	1497.8	316.2	1985.5	202.4
									International Flights:	216.0	54.7	306.6	21.8
									All Flights:	1713.8	370.9	2292.1	224.2
		Sim	nnle										-
summary —							Domestic APU Use:	285.1	17.8	161.9	30.0		
							International APU Use:	17.0	1.0	20.3	3.3		
Summary								All APU Use:	302.1	18.8	182.3	33.3	
		out	nut										
ouipui							Domestic Flight + APU:	1782.9	334.0	2147.4	232.4		
								ե	nternational Flight + APU:	233.0	55.7	326.9	25.1
									All Flight + APU:	2015.9	389.7	2474.4	257.5

Key Differences Between the NESCAUM Model and EDMS (cont.)

- Auxiliary Power Units* (APUs) handled in the same model
 - Same weighted average calculation of APUs on each airline's fleet of aircraft
 - Input time-in-use by airline/aircraft combination
 - Ability to specify how often gate power is used instead of APU
 - * APUs are small turbine engines used to supply power to the aircraft while it is parked at the gate.

Limitations of the NESCAUM Model

Airline/aircraft inventory is included for one calendar year

Can be fudged for nearby calendar years

★ Forecast inventories require an additional model

- Forecast model is also year-dependent, with some flexibility for use with other years
- Forecast-year LTOs must be developed for use with the forecast model from FAA projections

Presentation Outline

- The general method for calculating aircraft emissions
- The need for an alternative to EDMS
- Differences between the NESCAUM Model and EDMS
- Differences between EDMS and NESCAUM inputs

FAA Flight Profile Data: Takeoff extends to 1000 feet

Take-off Profile for B757-200 with PW2037

- Longer takeoff
 time means longer
 high-power operation,
 leading to higher
 NOx emissions
- Higher mixing height dramatically increases time-inmode

Monthly Mixing Heights

Other differences in inputs

 LTOs by airline/aircraft combination
 Monthly airport-specific taxi/idle times
 from DOT Bureau of Transportation Statistics
 APU times estimated from airport arrival/departure schedules

Similar Method for Air Taxi and General Aviation Aircraft

- ★ Smaller planes, but the same idea
- National registry data used for aircraft/engine combinations
- Weighted averages of aircraft/engine combinations and fleet mix (piston, turbine, and helicopters)
- ★ Time-in-mode adjusted for mixing height

Presentation Overview

- The general method for calculating aircraft emissions
- The need for an alternative to EDMS
- Differences between the NESCAUM Model and EDMS
- Differences between EDMS and NESCAUM inputs
- Airports studied and results

Logan International Airport Boston, MA

 Largest airport in New England
 27 million passengers in 1999
 Expect 37.5 million passengers in 2015
 Hoping to spread growth to regional airports

Bradley International Airport Hartford, CT

Bradley Overview

- ★6.3 million passengers in 1999, 7.3 million passengers in 2000
- ★Bradley is a "large" airport as of 2000.
- ★Currently adding a new terminal

Manchester Airport Manchester, NH

 Served 1.1 million passengers in 1997
 Served 2.8 million passengers in 1999

- Manchester is now a "medium" airport.
- Southwest Airlines brought low fares, tremendous growth

LTOs at the Three Airports

Northeast States for Coordinated Air Use Management

NOx Emissions --NESCAUM Estimate

tons NOx/year

HC Emissions --NESCAUM Estimate

tons HC/year

NESCAUM/SIP Comparison

Aircraft Emission Summary

- NESCAUM Model is more detailed and simpler than EDMS
- NESCAUM method incorporates more exact input data
- NOx emissions are higher than states have estimated
- ★APU emissions are about 5% of aircraft emissions

