Measures to Reduce Airport-Related Pollution

Coralie Cooper

Northeast States for Coordinated Air Use Management

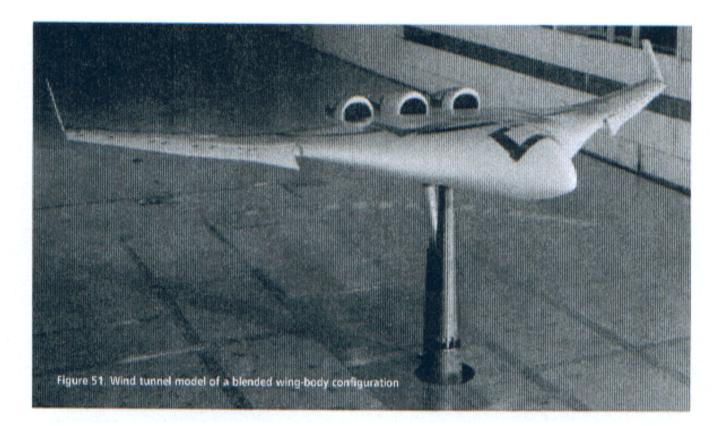
OTC Airport Workshop December 5, 2001

Presentation Overview

Aircraft Measures
 Ground Support Equipment Measures
 Ground Access Vehicle Measures
 Improving Inter-city Rail Service
 Conclusions

Aircraft technical options

- Since 1968 intensity of aircraft energy use has fallen 60% due to enhanced engine efficiency, improved aerodynamic performance and load factor
- *NASA's clean engine program has a goal of reducing aircraft engine emissions 60%
- ★Opportunities for future energy savings and emissions reductions are significant

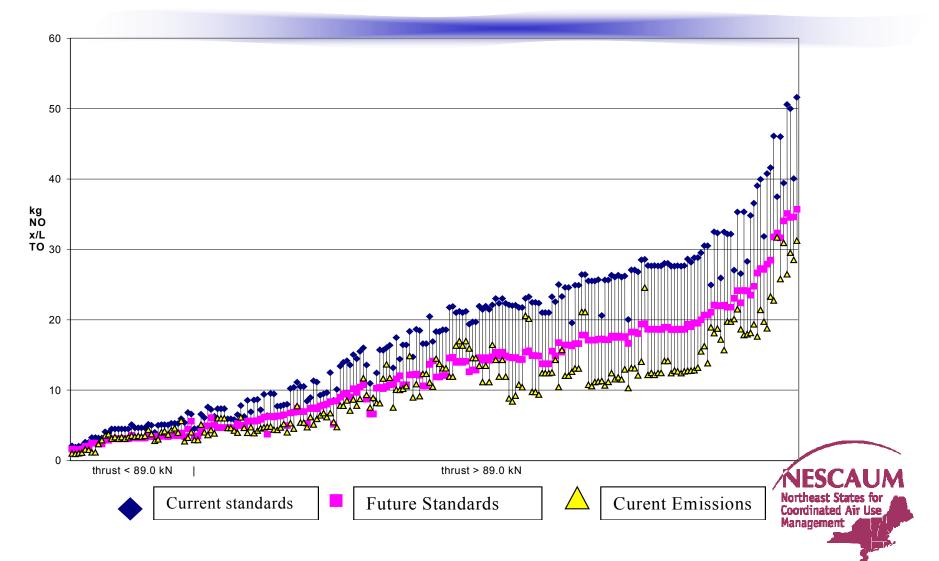

Aircraft Technical Measures*

Dual annular combustors
 Increased by-pass air ratio
 Introduction of turbofan engines
 Composite aircraft bodies
 Blended and/or hybrid laminar flow control wing flying configuration
 Fuel options - hydrogen in the future

* recommendations drawn from "Greener by Design"

Blended Wing Body Configuration

Source: Air Travel: Greener by Design The Technology Challenge


₹

Aircraft Engine Emission Trends

- Current ICAO standards will not reduce emissions from most aircraft engines
- Trend toward improving fuel efficiency by increasing pressure ratio will increase NOx
- New noise standards could increase NOx
- Emission standards that require reductions in criteria pollutants and improved fuel efficiency are technically feasible with today's technologies

Coordinated Air Use

Aircraft Engine Emission Standards

Aircraft Operational Measures

★ Reduced use of reverse thrust

- ★Increased single engine taxi
- ★Increased use of fixed gate electricity
- ★ Dispatch towing
- ★De-rated takeoff
- ★ Decentralized gates
- ★ Ground congestion reduction measures
- ★increased staging

Cost Effectiveness of Options

Option	NOx	HC	CO	Other Benefits	Costs (dollars per	
	emissions	emissions	emissions		ton of NOx + HC +	
	reduction	reduction	reduction		CO reductions)	
Dispatch Towing	.5-1%	.2-5%	2-5%	Reduces fuel consumption; may also help reduce ground congestion (esp. if high speed tugs are used).	Lifecycle costs are less than the alternative, so all emission reductions accrue for free	
Decentralized Gates	3%	10%	10%	Reduced fuel consumption.	11	
Ground Congestion Reduction Measures	3%	10%	10%	Reduced fuel consumption and travel delays for passengers; more efficient airport operation.	11	
Reduced Engine Taxi	10%	30%	30%	Reduced fuel consumption; simple to implement.	11	
Derated Take- off	10%	0%	0%	Reduced fuel consumption; simple to implement.	"	
Reduced Reverse Thrust	5-10%	<1%	<1%	Reduced fuel consumption; simple to implement.	" NESCAU Northeast States for Coordinated Air Use Management	

*note: some of the options above are already being implemented by air carriers

Ground Support Equipment Options

Replacement with natural gas or LPG (purpose built only)

Replacement with electrically powered machines

 Replacement of gate power and air conditioning with electric fixed gate power
 Retrofit with emission control devices or

fuel improvements

Cost effectiveness of CNG/LPG

Measure	NMHC emission decrease	CO emission decrease	NOx emission decrease	Cost Effectiveness
CNG/LPG	30% (for	30% (for	65%	\$1,000 – \$3,000 per ton of
replacement of	properly	properly		VOC/CO/NOx
Diesel	calibrated,	calibrated,		combined
	closed-	closed-		
	loop	loop		
	systems)	systems)		
CNG/LPG	50% - 70%	45%	25%	Savings
Conversion				_
from Gasoline				

NESCAUM Northeast States for Coordinated Air Use Management

Cost Effectiveness of Electric GSE Use

Equipment	Fuel Type	ICE mainten- ance costs	Electric replace- ment mainten- ance costs	Total Cost Differen- tial (\$/year)	Annual NOx reduc- tion	Lifetime NOx emission reduction (tons)	Cost Effectiveness (\$/ton)
Baggage Tractor	Gasolin e	1,461	1,472	794	0.4	3.4	1,900
	Diesel	1,461	1,411	1,337	0.2	2.4	5,800
Belt Loader	Gasolin e	908	1,060	-668 (1)	0.2	2.1	Savings
	Diesel	908	1,060	-1,182	0.1	.8	Savings
Aircraft Tug	Gasoli ne	4,116	4,237	-810	0.8	5	Savings
	Diesel	4,116	4,152	1,470	0.5	5.3	2,800

Source: Arcadis report prepared for EPRI

Gate Electrification

Effective at reducing or eliminating auxilliary power and ground power unit emissions

Can reduce or eliminate emissions associated with electricity, air conditioning, toilet disposal, fresh water delivery, food catering, baggage delivery, and refueling trucks

Gate Electrification (cont.)

- Not all airports are suited for gate electrification (older airports)
- ★Operators are finding that payback period is relatively short (less than 2 years)
- ★LA, Phoenix, and Boston have replaced up to 90% of APU-based power with fixed gate power
- Can reduce GSE to aircraft accidents, maintenance, reduce complexity of ground operations

Retrofit of GSE

Three way catalysts for gasoline powered machines

Oxidation catalysts or particulate filters/low sulfur diesel fuel with diesel machines

Fuel changes such as emulsified diesel fuel or low sulfur diesel

Ground Access Vehicle Technical Measures

★ CNG
★ Electric
★ LPG
★ Retrofit
★ Fuel changes

Costs of Alternative Fuel Vehicles

Incremental Cost for Purchasing Alternative Fuel Vehicles

Vehicle type	Incremental purchase price for		
	dedicated vehicle		
CNG bus	\$40,000		
CNG light-duty vehicle	\$3,000 to \$5,000		
Light-duty LPG	\$2,000		
Electric light-duty bus	\$12,000 to \$30,000		
Electric heavy-duty bus	\$125,000 to \$225,000		

Cost effectiveness of alternative fuel vehicle use

Vehicle type	Cost per ton of NOx, CO, HC, and PM		
	reduced		
Light-duty CNG	\$8,000		
Heavy-duty CNG	\$14,000		
Light-duty electric	\$44,000		
Heavy-duty electric	\$37,000		

*CO emissions are divided by 7 for the purpose of this analysis

Ground Access Vehicle Operational Measures

Compressed work schedules
Ride sharing
Increased use of public transit
Telecommuting
Reduced idling
Congestion management

Improved Intercity Rail Access/Service

Improved rail service (high speed Acela) had reduced air travel trips by 7% in the Northeast corridor after the first four months of service

★Acela now serves Newark Airport

- ★ Rail service has replaced air service between Paris and Brussels (air service cancelled)
- ★6,300 tons of NOx could be reduced annually in the U.K. if domestic and half of foreign trips were switched to rail

Coordinated Air Use

Auto-Air-Rail Comparison

Emissions comparison for 10,000 passengers, Toronto to Montreal

Mode	Fuel (kg)	HC (kg)	CO (kg)	NOx (kg)
Auto ¹	95,563	868	7,200	847
Air ²	260,905	123	1,304	18,512
Rail ³	44,310	105	319	2,338

1) 22 mpg, MY 1999 EPA emissions, 1.7 occupants

2) 50% Boeing 767-200, 50% Airbus 320, 70% load factor

3) 1-4-0 consist, 70% load factor

Source: prepared by Bombadier for the U.S. DOT Federal Railroad Administration

Conclusions: Aircraft

Aircraft engine emissions can be significantly reduced through the introduction of new and existing technologies

Aircraft emissions can be significantly reduced though the introduction of innovative aircraft design

★Aircraft engine standards that encourage efficiency and low emissions are needed

Conclusions: GSE, APU, and GPU

- Electric GSE provide the greatest emission reductions at the lowest overall cost of available GSE options
- Dedicated, purpose built alternative fuel GSE reduce emissions but at a greater cost than electric
- ★Gate electrification can cost effectively reduce APU and GPU emissions
- Retrofits can substantially reduce GSE emissions

Conclusions: GAV and Rail

Alternative fuel vehicles can significantly reduce GAV emissions

Operational measures such as telecommuting and other options are cost effective

Improved rail service can significantly reduce emissions

