Airport GSE Survey and Emission Modeling

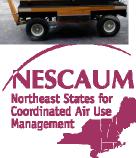
Airports Workshop Ozone Transport Commission BWI Airport

December 5, 2001 David Park, NESCAUM

dpark@nescaum.org

NESCAUM GSE Emission Inventory: Presentataion Overview

- ★Introduction to GSE
- ★ Goal of the emission inventory
- ★GSE population and activity inventory development
- ★GSE model description
 - Input parameters
 - Output parameters
- ★Modeled Emissions
- ★Conclusions



Ground Support Equipment

- **Pushback tractor**
- ★ Conditioned air unit
- 🛧 🛛 Air start unit 🔒
- ★ Baggage tug
- ★ Belt loader
- 🛧 🛛 Bobtail 🥆
- 🛧 Cargo loader
- 🛧 Cart
- 🛧 Deicer
- 🛧 Forklift
- 🛧 🛛 Fuel truck 🗸
- 🛧 Ground power unit
- ★ Lavatory cart
- ★ Lavatory truck
- 🛧 Lift
- **Maintenance truck**
- ★ Service truck
- 🛧 Water truck

Goal of the GSE Evaluation

- Evaluate three airports, Boston-Logan, Hartford-Bradley and Manchester, NH.
- Develop specific inventories of GSE population & activity at each.
- ★ Input the populations & activity into the GSE model developed by EEA & compare EPA vs. CARB emission methodology
- ★ Evaluate the EEA GSE Model

Who Uses GSE?

★ Airlines

Passenger & Freight

Majors, National, Regional

★Airport Authority

- Maintenance
- Fire/Rescue

★ Fixed Base Operations (FBOs)

GSE Population & Activity Inventory Development (Past)

★Top Down Method- LTO (Landing/Takeoff)

- Most inventories rely on this as a default method
- Regression equation based on aircraft size and GSE activity.
- \bigstar Less expensive and time consuming.
- Inventory is as accurate as the underlying data used to derive the regression equation.
 - Cold weather vehicles?
 - Airport maintenance vehicles?

GSE Population & Activity Inventory Development (NESCAUM)

- Bottom Up- Direct survey of airport populations.
- More time consuming, therefore more costly than the top down method.
- Relies on cooperation of GSE operators and accessibility of airport.
- Has potential to be more accurate than the top down method.

GSE Population & Activity Inventory Survey

Your Name		-	irport Gro			.quipine			Airport:_LOGAN		
					Teleph	one Numb	er:		Email:		
Todav's Da	te:		<u> </u>		Fax:		•				
Vehicle Type	included in your fleet?		Compression Ignition (Circle One)	On Road Certified	Number of this	Hours of Operation/ Year	Rated Horse- power	Fuel Usage/ Year	Comments		
		Diesel	Yes / No	Yes / No			-				
Wide Body		Gasoline	Yes / No	Yes / No							
Aircraft	Yes / No	Electric	Yes / No	Yes / No							
Pushback		LPG/CNG	Yes / No	Yes / No							
Tractor		Jet Fuel	Yes / No	Yes / No							
		(specify)	Yes / No	Yes / No							
		Diesel	Yes / No	Yes / No							
Narrow Body		Gasoline	Yes / No	Yes / No							
Aircraft	Yes / No	Electric	Yes / No	Yes / No							
Pushback		LPG/CNG	Yes / No	Yes / No							
Tractor		Jet Fuel	Yes / No	Yes / No							
		(specify)	Yes / No	Yes / No							
		Diesel	Yes / No	Yes / No							
Conditioned		Gasoline	Yes / No	Yes / No							
Air	Yes / No	Electric	Yes / No	Yes / No							
Unit		LPG/CNG	Yes / No	Yes / No							
		Jet Fuel	Yes / No	Yes / No							
		(specify)									

Population & Activity Survey Results

★Response Rates

- Logan:
 - Population: 65% 82% Usage: 51%
- Bradley:
 - Population: 80% Usage: 16%
- Manchester:
 - Population: 98% Usage: 19%

★Data Gaps

Logan:

Missing data for 3 majors (Northwest, TWA & United)

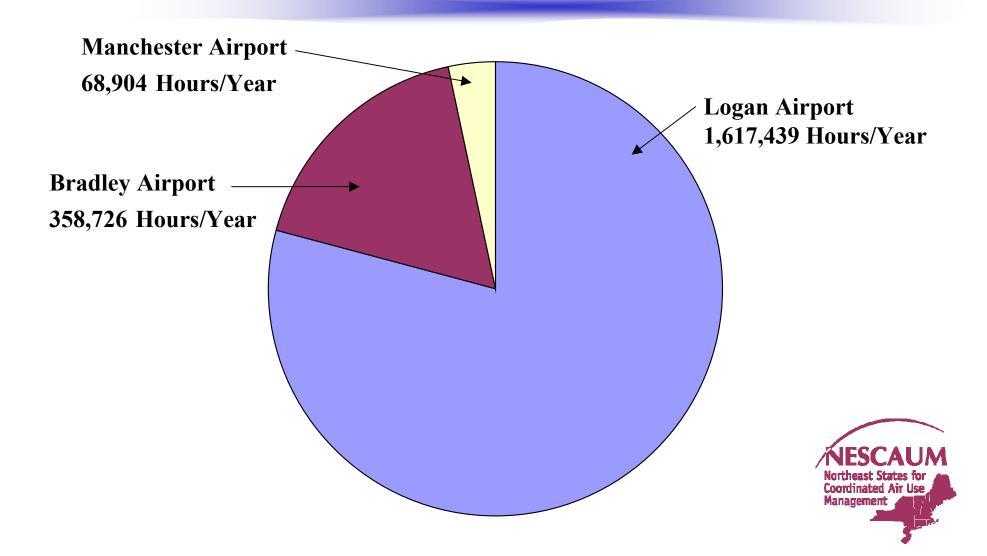
Bradley & Manchester:

Survey compliance rate was extremely low but was bolstered by a visual survey

Usage information lacking due to population data collection method

Self Surveying- Does it make sense?

Conditioned Air Unit


Air Start Unit

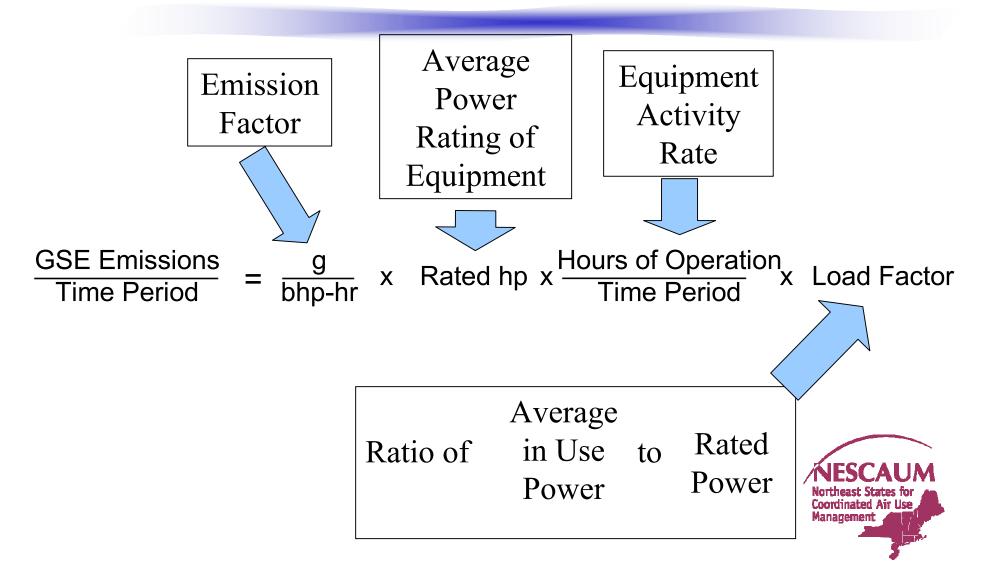
Ground Power Unit

★ Equipment is difficult to distinguish
 ★ Equipment may be stored elsewhere
 ★ May not capture seasonal usage
 ★ Must rely on default activity data

Airport Activity by Hours of GSE Equipment Operation, Year 1999

EEA GSE Emission Calculator, vsn. 1.0 (author Dan Meszler)

- ★ Basis of the Model (Comparison of EPA vs. CARB Estimates)
 - CARB emission rates
 - Default EPA GSE activity
- ★Improvements to EPA & CARB Methodology
 - Allows the input of specific, user defined values (population, usage, activity, fuel characteristics).
 - Accounts for deterioration
- Future Year Projection Capability? (None)
 NESCAUM based projections on LTO forecasts


Data Input: EEA GSE Emission Calculator, vsn. 1.0

	A	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0
1	GSE Ei	nissions	Calcula	itor (ver	sion 1.0	- Copyri	ight 200	0, Energ	y and E	Environm	iental Ai	nalysis, I	Inc.)		
2							-								
3	1.	luput all equ	uipment des	criptive data	on this page	e.									
4							allows to tail	lor emission	s estimates	to local activ	rity.				
5										"X" in the a		eld.			
6										be left unalte			fault emissi	on rates.	
7						pes are ente:						-			
8						to 500 individ									
9						fuel types cu				r.					
10				· ·	-										
11			S	CC4 - Equipm	ent Descriptio	n			SCC2 - Fuel	Engine Type					
12		005	Support Equip	045	Bobtail	085	Lav Truck		X	Default					
13			Term Tracto		Cargo Loader		Lift		60	2-Str Gas					
14			NB Pushback		Cart		Maint Truck		65	4-Str Gas					
15			WB Pushback		Deicer		Other		67	LPG					
16			Air Cond. Un		Forklift		Service Truck		68	CNG					
17			Air Start Uni		Fuel Truck	110	Water Truck		70	Diesel					
18		035	Baggage Tug	075	GPU				99	Electric					
19		040	Belt Loader	080	Lav Cart										
20											Gasoline	THC	CO	NOx	SO2
21	GSE		Fuel/Eng						Activity	Useful	Fuel Tank	Emission	Emission	Emission	Emission
22	Type	GSE	Type	Fuel/Eng	Model			Load	Rate	Life	Size	Rate	Rate	Rate	Rate
23	(SCC4)	Description	(SCC2)	Description	Year	Population	Horsepower	Factor	(hrs/day)	(hours)	(gallons)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)
24	_														
25		Support Equip		Diesel	1985	1	315	X	X	X	X	X	X	X	X
26		Support Equip		Diesel	1990	1	315	X	X	X	X	X	X	X	X
27		Support Equip		Diesel	1960	1	143	X	X	X	X	X	X	X	X
28		NB Pushback		Default	X	1	X	0.11613178	X	X	X	X	X	X	X
29		NB Pushback	65	4-Str Gas	X	2	X	0.11613178	1	X	X	X	X	X	X
30		NB Pushback	65	4-Str Gas	1999	1	300	0.11613178	X	X	X	X	X	X	X
31		NB Pushback		Diesel	X	1	X	0.11613178		X	X	X	X	X	Х
32	15	NB Pushback	70	Diesel	X	2	X	0.11613178	4	X	X	X	X	Х	X
	► ► Es	timated Emiss	ions λ User	[.] Equipment	Inputs / L	lser Scenario I	inputs / Cal	cs / Defaults	Correct	•					Þ

Data Input: EEA GSE Emission Calculator, vsn. 1.0 (Cont'd)

	A	В	С	D	E	F	G	Н	Ι	J	K	L	М	N	0
20											Gasoline	THC	CO	NOx	SO2
21	GSE		Fuel/Eng						Activity	Useful	Fuel Tank	Emission	Emission	Emission	Emission
22	Type	GSE	Type	Fuel/Eng	Model			Load	Rate	Life	Size	Rate	Rate	Rate	Rate
23	(SCC4)	Description	(SCC2)	Description	Year	Population	Horsepower	Factor	(hrs/day)	(hours)	(gallons)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)
24		_		_		-	-			, , ,					
25	5	Support Equip	70	Diesel	1985	1	315	Х	X	X	X	X	X	X	х
26	5	Support Equip	70	Diesel	1990	1	315	Х	X	Х	X	X	X	X	X
27	5	Support Equip	70	Diesel	1960	1	143	Х	X	Х	X	X	X	X	Х
28	15	NB Pushback	Х	Default	х	1	X	0.11613178	X	Х	X	X	X	X	Х
29	15	NB Pushback	65	4-Str Gas	Х	2	X	0.11613178	1	Х	X	X	X	X	Х
30	15	NB Pushback	65	4-Str Gas	1999	1	300	0.11613178	X	X	X	X	X	X	X
31	15	NB Pushback	70	Diesel	Х	1	X	0.11613178	1.09589041	X	X	X	X	X	Х
32	15	NB Pushback	70	Diesel	Х	2	X	0.11613178	4	X	X	X	X	X	X
33	15	NB Pushback	70	Diesel	1996	1	210	Х	Х	X	X	X	X	X	Х
34	15	NB Pushback	70	Diesel	1973	1	93	0.46710526	0.13424658	Х	X	Х	X	X	Х
35	15	NB Pushback	70	Diesel	1993	1	150	0.46710526	0.13424658	Х	X	Х	Х	Х	Х
36	15	NB Pushback	70	Diesel	1998	1	110	0.46710526	0.13424658	Х	X	Х	X	Х	X
37	15	NB Pushback	70	Diesel	1999	1	300	0.46710526	0.13424658	Х	X	Х	X	Х	Х
38	20	WB Pushback	70	Diesel	1978	1	210	0.46710526	0.13424658	Х	X	Х	X	X	X
39	20	WB Pushback	70	Diesel	1985	2	285	0.46710526	0.13424658	Х	X	Х	X	Х	X
40	20	WB Pushback	70	Diesel	1989	1	270	0.46710526	0.13424658	Х	X	Х	Х	X	Х
41	20	WB Pushback	70	Diesel	1990	1	300	0.46710526	0.13424658	Х	X	Х	Х	X	Х
42	20	WB Pushback	70	Diesel	1995	1	X	0.46710526	0.13424658	Х	X	Х	Х	X	Х
43	20	WB Pushback	70	Diesel	1995	1	300	0.46710526	0.13424658	X	X	Х	Х	X	Х
44	20	WB Pushback	70	Diesel	1999	3	300	0.46710526	0.13424658	X	X	Х	X	X	Х
45	20	WB Pushback	70	Diesel	Х	1	360	Х	0.20547945	Х	X	Х	Х	X	Х
46	20	WB Pushback	70	Diesel	Х	1	210	Х	Х	X	X	Х	Х	X	Х
47	20	WB Pushback	70	Diesel	1975	1	350	Х	Х	Х	X	Х	Х	X	X
48	20	WB Pushback	70	Diesel	1982	1	135	Х	Х	Х	X	Х	X	X	Х
49	20	WB Pushback	70	Diesel	1988	1	210	Х	Х	Х	X	Х	Х	X	Х
50	20	WB Pushback	70	Diesel	1989	2	540	х	Х	X	X	х	X	X	Х
51	20	WB Pushback	70	Diesel	Х	1	342	Х	0.20547945	Х	X	Х	Х	X	Х
	► N Es	timated Emissi	ons Use	r Equipment I	nputs 🖉	Jser Scenario	Inputs / Cal	cs / Defaults	Correct	•					۱.

Algorithm for GSE Emissions Calculation

Load Factor Adjustment: EEA GSE Emission Calculator, vsn. 1.0

Load Factor =

Average Power In Use Rated Power

Brake Specific Fuel Consumption

Rated Hp/Hr

Rated Brake Specific Fuel Consumption

Rated Hp/Hr

Why Adjust Load Factors Based on Fuel Consumption?

Model Equivalent Name	Equipment Type	Model Load Factor	Corrected Load Factor
NB Pushback	Narrow Body Aircraft Pushback Tractor	0.80	0.12
NB Pushback	FE Loader	0.80	0.47
WB Pushback	Wide Body Aircraft Pushback Tractor	0.80	0.08
WB Pushback	WB Pushback	0.80	0.47
Air Cond. Unit	Conditioned Air Unit	0.75	0.39
Air Start Unit	Air Start Unit	0.90	0.02
Baggage Tug	Baggage Tug	0.55	0.02
Belt Loader	Belt Loader	0.50	0.07

.irport:_LOGAN :mail:
mail
.inaii
omments

Pollutants: EEA GSE Emission Calculator, vsn. 1.0

★ Hydrocarbon:

- Model reports evaporative and exhaust portions of HC separately and as a total.
- User may specify how hydrocarbons should be reported:

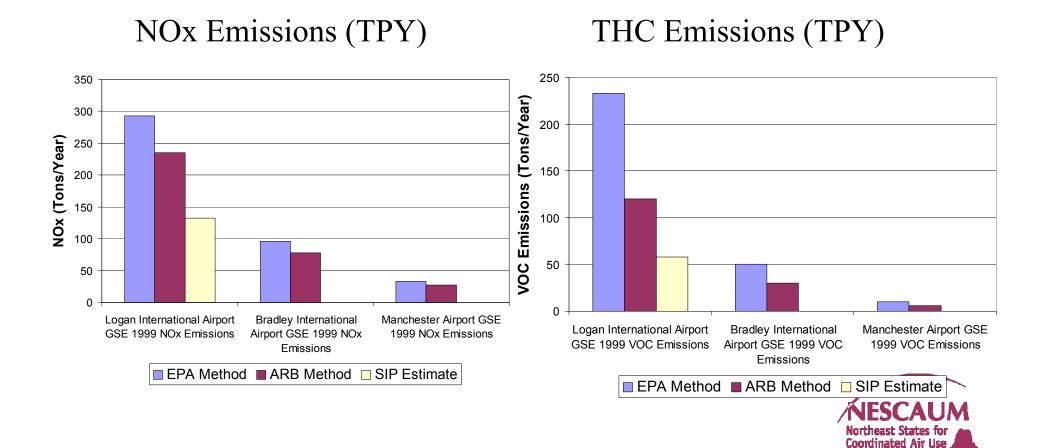
THC, TOG, NMHC, NMOG, VOC

Pollutants: EEA GSE Emission Calculator, vsn. 1.0 (Cont'd)

★Particulate Matter:

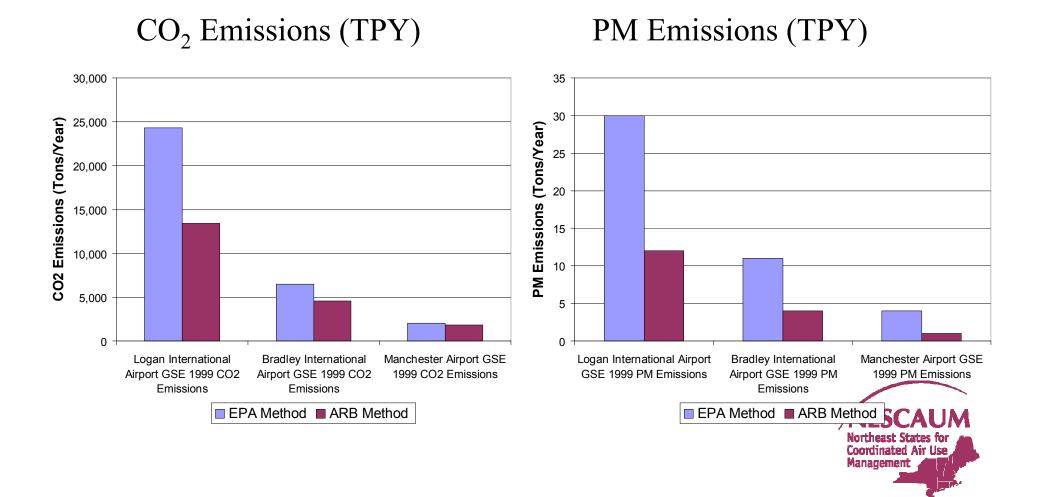
- Model does not currently distinguish between Total PM and PM₁₀
- User may specify how PM should be reported: Total PM, PM₁₀, PM_{2.5}
- ★Other pollutants reported
 - NO_x, CO, CO₂, SO₂

Output: EEA GSE Emission Calculator, vsn. 1.0

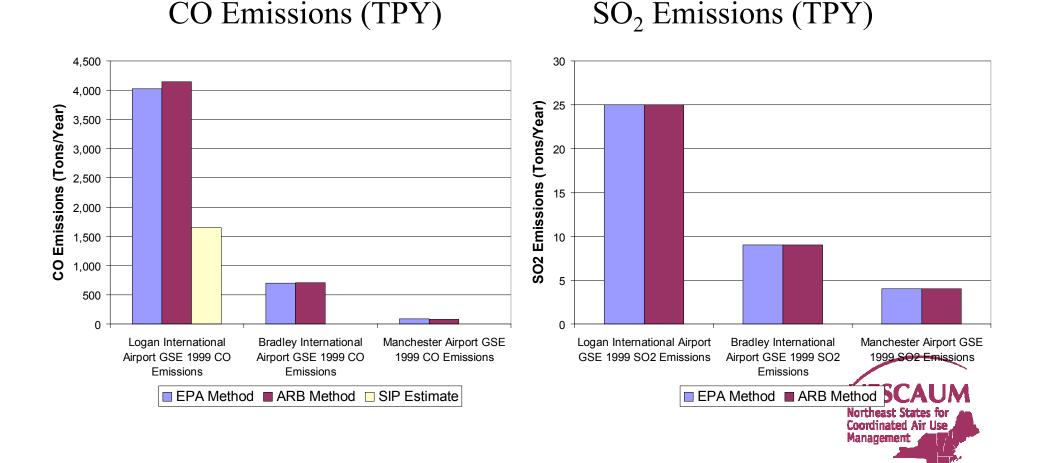

	A	в	С	D	E	Frank	G		and the second	J	К		M	N.	0	P	Q	B	S	T
1	GSE En	nissions	Calcula	tor (ver	sion 1.0 -	Copyrig	ght 2000	, Energy	y and Em	vironme	ental An	alysis, I	nc.)							
2																				
3																				
4																				
5																				
6		Generate	d Emissio	n Estima	t															
7					1															
8	1							EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
9	1					Total		Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Crankcase	Diurnal	Displ'mnt	Spillage	Hot Soak	Run Loss	Rest Loss
10	1				Equipment	Activity		THC	CO	NOs	TotPM	CO2	SO2	THC						
11	1				Population			(lbs/dau)	(lbs/dau)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/dau)	(lbs/day)						
12																				
13		All Equipm	ent		141	189		41.8	490.3	178.9	21.3	11239.9	20.1	4.4	7.2	0.5	0.0	0.0	0.0	0.0
14																				
15		Airport Sup	oport Equipr	nent	3	7		4.4	16.0	24.7	3.2	1248.9	2.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0
16		Terminal T	ractors		0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17		Narrow Bo	dy Pushbac	k.	12	16		2.9	51.8	12.1	1.3	918.0	1.5	0.5	0.6	0.1	0.0	0.0	0.0	0.0
18		Wide Body	Pushback		32	22		18.7	74.2	112.4	13.1	6710.9	13.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0
19		Air Conditi	oning Unit		3	0		0.1	0.3	0.7	0.1	28.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20		Air Start Ur	nit		7	1		0.0	0.2	0.2	0.0	18.9	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
21		Baggage T	'ug		20	52		2.7	46.7	6.0	0.8	490.8	0.6	0.5	2.7	0.1	0.0	0.0	0.0	0.0
22		Belt Loade	ı.		12	33		1.7	38.3	2.0	0.2	262.1	0.2	0.4	0.9	0.1	0.0	0.0	0.0	0.0
23		Bobtail			0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24		Cargo Loa	der		0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25		Cart			12	5		0.5	13.1	0.6	0.1	85.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26		Deicer			9	9		1.6	48.5	0.9	0.0	151.9	0.0	0.5	1.5	0.1	0.0	0.0	0.0	0.0
27		Forklift			1	1		0.0	0.4	0.1	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28		Fuel Truck			8	0		0.0	0.1	0.2	0.0	9.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29		Ground Po	ower Unit		9	27		2.0	6.2	11.2	1.6	502.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30		Lav Cart			3	2		0.5	18.9	0.0	0.0	31.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31		Lav Truck			0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32		Lift			0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33		Maintenan	ce Truck		4	5		0.4	12.5	0.4	0.0	66.4	0.0	0.1	0.6	0.0	0.0	0.0	0.0	0.0
34		Other			3	2		0.8	2.5	4.2	0.6	190.7	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35		Service Tru			2	7		4.8	142.7	2.8	0.0	458.2	0.1	1.6	0.4	0.2	0.0	0.0	0.0	0.0
36		Water Truc	:k		1	1		0.6	17.8	0.4	0.0	58.9	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0
37																				
38		All Equipm	ent		141	189		41.8	490.3	178.9	21.3	11239.9	20.1	4.4	7.2	0.5	0.0	0.0	0.0	0.0
39																				
40																				
41		Checksum			141	189		41.8	490.3	178.9	21.3	11239.9	20.1	4.4	7.2	0.5	0.0	0.0	0.0	0.0
42		100000000			Okay	Okay		Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay	Okay
		Estimate	d Emissia	ns / Us	er Equipme	ent Inputs	/ User	Scenario I	Inputs /	Calcs / D	efaults /	Correct	4							

Projection Year Emissions, 2010

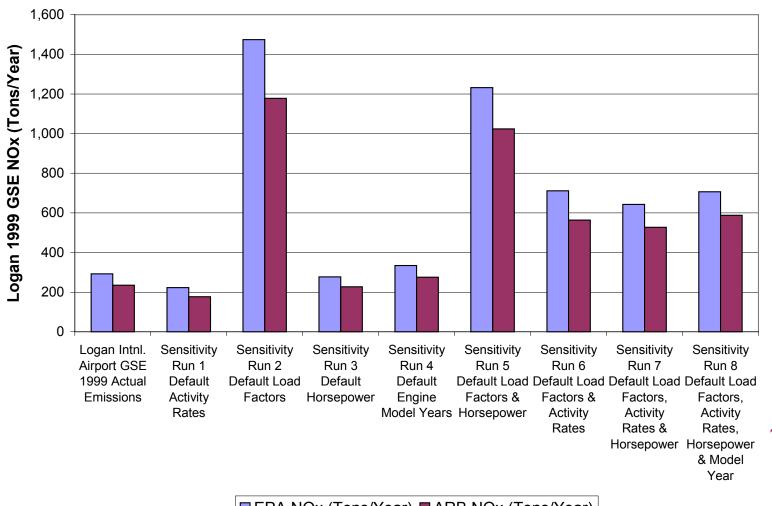
- Airline GSE population and activity projections based on a proportional increase in LTOs
- ★ Airport management fleet growth dependent on airport
 - Logan was <u>not</u> predicted to expand significantly geographically.
 - Bradley and Manchester both expected to expand geographically.


Airport	GSE Population Growth Factor	
Logan Airport	110.2%	
Bradley International Airport	136.5%	North
Manchester Airport	140.5%	Manag

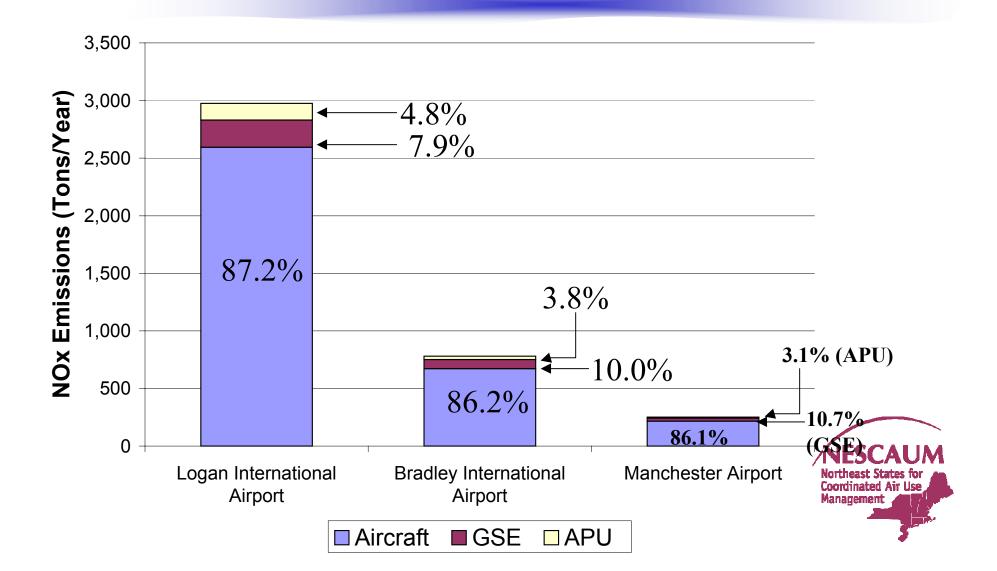
Modeled GSE NO_x & THC Emissions at Study Airports, 1999

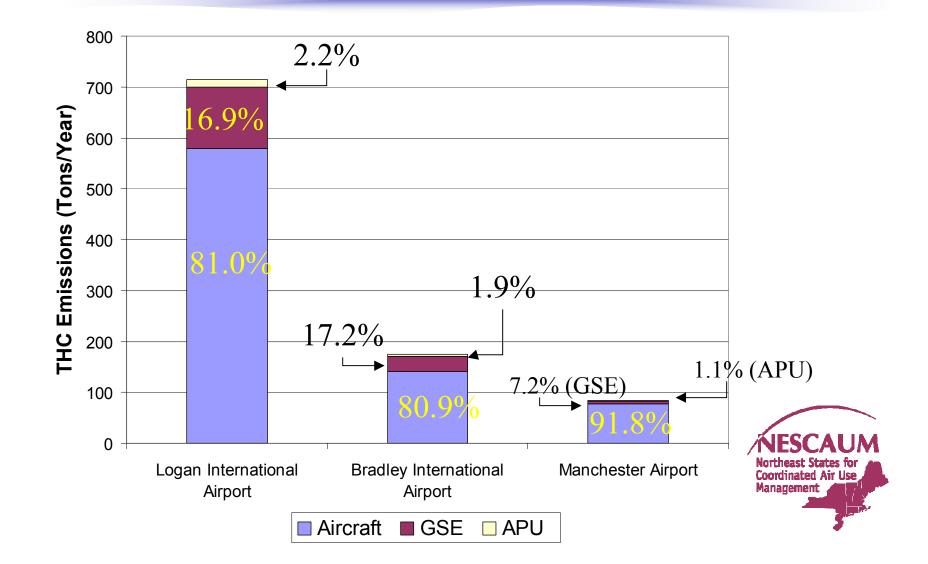


Management

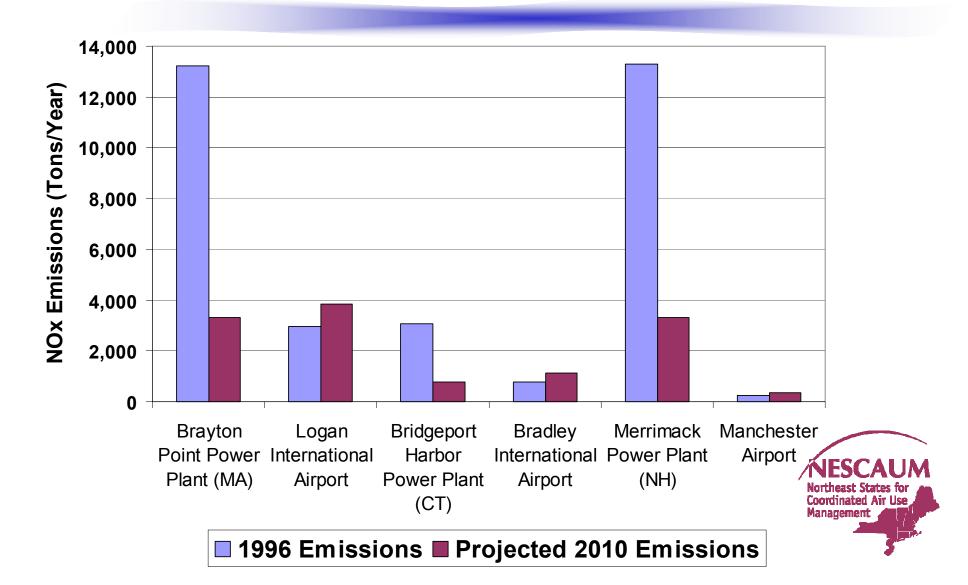

Modeled GSE CO & PM Emissions at Study Airports, 1999

Modeled GSE CO₂ & SO₂ Emissions at Study Airports, 1999


Model Sensitivity Analysis



EPA NOx (Tons/Year) ARB NOx (Tons/Year)


Total Airport NOx Emissions 1999 (Aircraft, GSE & APU)

Total Airport THC Emissions 1999 (Aircraft, GSE & APU)

Power Plant - Airport NO_x Emissions Comparison, 1996 vs. Projected 2010

