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Almost half of the world's population still cooks on biomass cookstoves of poor efficiency and primitive design,
such as three stone fires (TSF). Emissions from biomass cookstoves contribute to adverse health effects and cli-
mate change. A number of improved cookstoves with higher energy efficiency and lower emissions have been
designed and promoted across theworld. During the design development, and for the selection of a stove for dis-
semination, the stove performance and emissions are commonly evaluated, communicated and compared using
the arithmetic average of replicate tests made using a standardized laboratory-based test, commonly the water
boiling test (WBT). However, the statistics section of the test protocol contains some debatable concepts and
in certain cases, easily misinterpreted recommendations. Also, there is no agreement in the literature on how
many replicate tests should be performed to ensure “confidence” in the reported average performance (with
three being themost common number of replicates). Thismatter has not received sufficient attention in the rap-
idly growing literature on stoves, and yet is crucial for estimating and communicating the performance of a stove,
and for comparing the performance between stoves. We illustrate an application using data from a number of
replicate tests of performance and emission of the Berkeley–Darfur Stove (BDS) and the TSF under well-
controlled laboratory conditions. Here we focus on two as illustrative: time-to-boil and emissions of PM2.5 (par-
ticulate matter less than or equal to 2.5 μm in diameter). We demonstrate that an interpretation of the results
comparing these stoves could be misleading if only a small number of replicates had been conducted. We then
describe a practical approach, useful to both stove testers and designers, to assess the number of replicates need-
ed to obtain useful data from previously untested stoves with unknown variability.

© 2014 International Energy Initiative. Published by Elsevier Ltd. All rights reserved.
Introduction

About half of theworld's population uses biomass as fuel for cooking
(IEA, 2004). The smoke from biomass cooking fires was recently found
to be the largest environmental threat to health in the world, and is as-
sociated with 4 million deaths each year (Lim et al., 2012). This expo-
sure has also been linked to adverse respiratory, cardiovascular,
neonatal, and cancer outcomes (Smith et al., 2004; Weinhold, 2011). A
2011 World Bank report notes significant contributions of biomass
cooking to global climate change (World Bank, 2011). The contribution
to climate change from black carbon (BC) emission from biomass
cooking is a topic of growing interest, especially in terms of climate forc-
ing and melting of glaciers (Hadley et al., 2010; Ramanathan and
ed by Elsevier Ltd. All rights reserve
Carmichael, 2008). Current biomass stoves lead to a large burden of
disease, and contribute to adverse impacts on local and the global
environment. Hence there is substantial interest in developing and
disseminating fuel-efficient biomass stoves with reduced emissions
(e.g. DOE, 2011). Launched in September 2010, the Global Alliance
for Clean Cookstoves (GACC) “100 by 20” goal calls for 100 million
homes to adopt clean and efficient stoves and fuels by 2020.

The “three-stonefire” (TSF) is a commonly prevailing cookingmeth-
od for a large fraction of the population at the base of the economic pyr-
amid. In quantifying the performance of an improved stove, the TSF is
commonly used as the baseline. This least expensive class of stove is
simply an arrangement of three large stones supporting a pot over an
open and unvented biomass fire. A TSF is one of the two stoves we ana-
lyzed in this study.We also tested the performance and emissions of the
Berkeley–Darfur Stove (BDS) as an exemplar of an improved fuel-
efficient biomass cookstove. The BDSwas developed at Lawrence Berke-
ley National Laboratory (LBNL) for internally displaced persons in
d.
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Darfur, Sudan (http://cookstoves.lbl.gov/darfur.php). It is an all-metal
precision-designed natural-convection stove, with design features co-
developed by iterative feedback from Darfuri women cooks. The BDS
by design accommodates Darfuri traditional round-bottom cooking
pots and cooking techniques (Fig. 1).

A literature survey of recent laboratory cookstove testing in peer-
reviewed journal articles shows widely different numbers of replicate
tests (Bailis et al., 2007; Jetter and Kariher, 2009; Jetter et al., 2012;
MacCarty et al., 2008, 2010; Roden et al., 2009; Smith et al., 2007). The
number of replicates reported in these seven studies range from 1 to
23. However, six out of seven studies have reported results with only
3 or fewer replicates. One then can rightly ask: how many replicate
tests do I need to test the performance and emissions of the stove?
Answering this question is application specific, and requires greater
specificity. For example, the question might be better phrased. For a
water boiling test (WBT), how many replicates are needed to estimate
the average “time to boil” to within 2 min and with 95% confidence?
Or how many replicates are needed to confirm, with 95% confidence,
that Stove “A” emits less PM2.5 than Stove “B”? These questions exem-
plify perhaps the most frequently asked questions in planning stove
experiments and interpreting their results.

There is no single or simple answer to the number of replicates
needed to answer the above questions. The answer depends on the ex-
perimental design, howmany parameters need to be estimated, and the
resulting variability in the stove replicates. In this study, we investigate
how to answer the above questions using data from the BDS and TSF
water boiling experiments. We show how the number of replicates is
linked to uncertainty and variability in the experiments and stove per-
formance. We also show howmany replicates are likely needed as var-
ious practical performance comparisons, such as “Does Stove A perform
Fig. 1. Schematic of the Berkeley-Darfur Stove. (1) A tapered wind collar that increases
fuel-efficiency in the windy Darfur environment and allows for multiple pot sizes;
(2) wooden handles for easy handling; (3) metal tabs for accommodating flat plates for
bread baking; (4) internal ridges for optimal spacing between the stove and a pot formax-
imum fuel efficiency; (5) feet for stability with optional stakes for additional stability;
(6) nonaligned air openings between the outer stove and inner fire box to accommodate
windy conditions; and (7) small fire box opening to prevent using more fuel wood than
necessary.
better than Stove B?” and “What is the uncertainty in the expected
performance of Stove A or Stove B?” Finally, we describe a practical ap-
proach to design an experiment to test the performance of a previously
untested stove.

Problem statement and causes of variability

Appendix 6 of the WBT (version 3.0, http://www.pciaonline.org/
node/1048) provides a detailed approach for comparing the perfor-
mance of stoves. It describes a suite of test statistics and important con-
siderations for interpreting test results. While comprehensive, the
description contains some debatable concepts and in certain cases,
easily-misinterpreted recommendations. For example, it affirms that
“At least three tests should be performed on each stove” and provides
a cogent explanation for it. It also discusses the importance of paying
attention to the statistical significance of a series of comparison tests
between the performances of two stoves. While both statements are
correct, it is not surprising that stove testers misinterpret these com-
ments as (i) “only three tests are needed” or (ii) a hypothesis test
with strong p-value (assuming a Gaussian distribution) provides unar-
guable confirmation of stove performance or comparison results. In
fact, neither interpretation is correct or claimed in the text. We reason
further that elucidation of Appendix 6 is necessary, and a more trans-
parent methodology would greatly benefit stove testers. We believe
that a transparent methodology would be best accomplished by devel-
oping an approach that maps the trade space between sample size, var-
iability, and confidence. We also believe it is important to show that
alternativemethods for comparing the performances of stoves are avail-
able and should be considered. This work thus builds and improves
upon Appendix 6 by providing newmethods of interpreting test results
for stove testers.

The literature generally shows that even under carefully controlled
conditions, stove test results show high test-to-test variability (coeffi-
cient of variation N 1.0, e.g. Jetter et al., 2012). There are many possible
causes of this variability even within a precisely defined test such as the
latest WBT (version 4.2.2), and we list a few here. Stove efficiency and
emissions are generally a function of thermal power, and owing to the
discrete nature of fuel-feeding events, a stove's thermal power invari-
ably varies, also contributing to temporal variability within a test,
which can translate into test-to-test variability. Despite due care, the
ratio of bark to sapwood to hardwood for various pieces of fuelwood
can be different, and thus will have different burn characteristics. Fur-
thermore, different pieces of fuelwood may have different surface to
volume ratios, contributing to different rates of burning. Lastly, even
reasonably experienced and careful stove testers demonstrate some
variability in the way they tend the fire in the stove from test to test,
and within a test (Granderson et al., 2009). All these (and other uncon-
trolled factors) together give rise to what we lump together as variabil-
ity in the test-to-test replicate results for a stove under controlled
laboratory conditions.

Approach

The question of “Howmany replicate tests do I need?” is not novel. It
is a well-researched question in classical statistical theory, but has not
receivedmuch attention from the stove research community. We brief-
ly summarize here the statistical background relevant to answer the
question.

Probability density function and cumulative distribution function

Technically, for a continuous random variable, the probability densi-
ty function (PDF) describes the probability that a value will be within a
certain range of the sample. However, as this range is evaluated by inte-
grating, it can be chosen to be quite small, so for most practical pur-
poses, the PDF may be considered the probability of obtaining a
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particular value (Ellison et al., 2009). Graphically, if the PDF is a curve,
the cumulative distribution function (CDF) is the area under that
curve. It is used to compute probability; the larger the included range,
the greater the probability. Because of this, the CDF over the entire
range is equal to 1. For a normal (or Gaussian) distribution, the CDF
curve is a normal ogee curve, which is a smooth even S-shaped curve
(Ellison et al., 2009). Skewing in the distribution away from the
Gaussian will lead to one half of the S to be elongated or distorted.

Standard error and confidence interval for an average

The standard deviation refers to the variation of observationswithin
individual experimental units, whereas the standard error refers to the
random variation of an estimate (made with n replicates) from the
mean value that will be obtained as the number of replicates increases.
The standard deviation σ is calculated by:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

X
xi−xð Þ2

r
ð1Þ

where xi =1, 2,… n are the individual measurements used to calculate
the average. A convenient way to calculate the sample standard devia-
tion is using the “STDEV” function in Excel. The standard error is the
measure of the experimental error of an estimated statistic (e.g. the
mean). For the sample average x from n replicate tests, the standard
error σ x is σffiffi

n
p , where σ is the standard deviation of the n replicates.

The standard error on themean can be reduced by increasing the num-
ber of replicates. Replication will not reduce the standard deviation but it
will reduce the standard error. In practical terms, this means that our
goal is to achieve a standard error small enough to make convincing
and useful conclusions. Additionally, in our experience, computing the
variance can be problematic from very few replicates. It is mathemati-
cally correct that a variance can be computed from just three replicates.
However, we have commonly found that three replicates resulted in a
somewhat small variance, only to be often greater or much greater
once we include the fourth and fifth samples. As a rule-of-thumb we
are dubious of variances computed from fewer than five replicates.

The confidence interval indicates the reliability of an estimate made
from a given number of replicates. The (1− α)100% confidence interval
for the average x has the form x� E, where E is called the half-length,
since a segment of the length of 2E centered on x, provides the full con-
fidence interval. E is related to α, σ, and n (the number of replicates) by
the following equation.

E ¼ Zα=2
σffiffiffi
n

p ð2Þ

whereZα=2
is a dimensionless number that can be looked up in standard

handbooks for various standard distributions (e.g. Berthouex and
Brown, 2002). Transposing Eq. (2), the number of replicates that will
produce this interval half-length is

n ¼ Zα=2
σ

E

� �2

: ð3Þ

This assumes random sampling. It also assumes that n is large
enough that the normal distribution can be used to define the confi-
dence interval. To apply Eq. (3), we must specify E, α (or 1 − α), and
σ. Values of (1 − α) that might be used are shown in the top row
with corresponding values of Z in the bottom row of Table 1.

When the measurements are assumed to be normally distributed
but the number of replicates is small (by small, textbooks suggest less
Table 1
Summary of Z values.

1 − α = 0.99 1 − α = 0.95 1 − α = 0.90
z = 2.56 z = 1.96 z = 1.64
than 30) and the population standard deviation is unknown, a Student's
t-distribution is used (Berthouex and Brown, 2002). To calculate the
number of replicates n, the coefficient tp is used in place of zα=2

shown
in Eq. (3). A selection of t-values is listed in Table 2. The t value decreases
as n increases, but notice that there is little change once n exceeds 5. An
exact solution of the number of replicates for small n (less than 30) re-
quires an iterative solution, but a good approximate is obtained by using
a rounded value of t=2.1 or 2.2, which covers a good working range of
n=10 to n=25 (p= 0.05). When analyzing data we carry three dec-
imal places in the value of t, but that kind of accuracy is misplaced. The
greatest uncertainty lies in the value of the specified σ (refer to Eq. (2)),
so we can conveniently round off t to one decimal place. Additional in-
formation about confidence interval estimation and experiment sizing
can be found in Berthouex and Brown (2002), Spiegel et al. (2008),
and Taylor (1997).

Bootstrapping

All the preceding discussion was predicated on the assumption of a
Gaussian distribution of underlying population.What if the distribution
is not Gaussian? Bootstrapping is a powerful statistical approach that al-
lows estimation of the variability ofmanyproperties of the datawithout
making any assumptions about the shape of the original distribution F.
Efron (1979) provides an accessible explanation, with examples, of
the bootstrap method. The key principle of bootstrapping is to simulate
repeated observations from the unknown distribution F, using repeated
sampling of the obtained single set of data. Bootstrapping can be imple-
mented by constructing a number of resamples of the observed dataset.
Each resample is obtained by random sampling with replacement from
the original dataset (Varian, 2005). Increasing the number of resamples
can reduce the impact of random sampling errors, but it cannot increase
the amount of information existing in the original dataset (Efron and
Tibshirani, 1993).

Kolmogorov–Smirnov test

The Kolmogorov–Smirnov (K–S) test quantifies whether two cumu-
lative distribution functions (CDFs) are from the same population. It
does so by exploring the maximum distance between the two CDFs.
Corder and Foreman (2009) provide a good summary of the K–S test.
The null hypothesis of a K–S test poses that the two samples are from
the same population, and the research hypothesis poses either that
they generally differ, leading to a two-tailed probability estimate, or
that they differ in a specific direction, leading to a one-tailed estimate
(Wall and Jenkins, 2003). The K–S test can be used to compare a sample
distribution and a reference distribution or to compare two sample dis-
tributions. We will apply this test to help us explore how many repli-
cates are needed to confirm whether the performance of two stoves is
indistinguishable.

The K–S test is a nonparametric statistical test and is only limited by
the condition that it must be applied to continuous distributions. Unlike
the t-test and other parametric tests, which require assuming Gaussian
distribution, continuity is the primary requirement for application of K–
S test making it a very useful tool with unknown distributions. Also for
small and medium samples, it is more effective to use the K–S test over
other nonparametric “goodness-of-fit” tests, such as the chi-square test
or the Wilcoxon test. The different research hypotheses of the K–S test
also provide directional flexibility which the chi-square test cannot pro-
vide (Wall and Jenkins, 2003).

Methods

Laboratory testing

Laboratory tests of the BDS and TSF were performed at the LBNL
cookstove testing facility. Concentrations of PM2.5 (particulate matter



Table 2
Student's t-distribution critical values.

n n − 1 t.995 (one sided) or t.975 (one sided) or t.95 (one sided) or

(Number of replicates) (Degrees of freedom) t.99 (two sided) t.95 (two sided) t.90 (two sided)

1 – – – –

2 1 63.657 12.706 6.314
3 2 9.925 4.303 2.920
4 3 5.841 3.182 2.353
5 4 4.604 2.776 2.132
6 5 4.032 2.571 2.015
7 6 3.707 2.447 1.943
8 7 3.500 2.365 1.895
9 8 3.355 2.306 1.860
10 9 3.250 2.262 1.833
11 10 3.169 2.228 1.812
12 11 3.106 2.201 1.796
13 12 3.054 2.179 1.782
14 13 3.012 2.160 1.771
15 14 2.977 2.145 1.761
16 15 2.947 2.132 1.753
17 16 2.921 2.120 1.746
18 17 2.898 2.110 1.740
19 18 2.878 2.101 1.734
20 19 2.861 2.093 1.729
21 20 2.845 2.086 1.725
22 21 2.831 2.080 1.721
23 22 2.819 2.074 1.717
24 23 2.807 2.069 1.714
25 24 2.797 2.064 1.711
26 25 2.787 2.060 1.708
27 26 2.779 2.056 1.706
28 27 2.771 2.052 1.703
29 28 2.763 2.048 1.701
30 29 2.756 2.045 1.699
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less than or equal to 2.5 μm in diameter), carbon monoxide/carbon di-
oxide (CO/CO2), BC, and several other co-pollutants emitted from the
BDS and TSF were simultaneously measured. The DustTrak measures
the amount of light scattered by particles and relates that to their
mass. It is calibrated for a National Institute of Standards and Technolo-
gy (NIST) certified PM standard composed of soil from Arizona. Since
the amount of light scattered by particles is specific to theirmorphology
and chemical composition, in this study a calibration specific to wood
smoke was developed, per the manufacturer's recommendation, by
comparing PM2.5 concentrations measured with the DustTrak after
adjusting for secondary dilution to those measured gravimetrically.
However, the DustTrak data are not as reliable and consistent as gravi-
metric results.

The CO/CO2 concentrationsweremeasured in a single instrument by
nondispersive infrared absorption spectroscopy (NDIR analyzer, CAI
600 series). A cookstove smoke-specific calibration was developed for
the BC aethalometer measurements. The results were compared with
particle light-absorption coefficientsmeasuredwith a photoacoustic ab-
sorption spectrometer (PAS) and elemental carbon concentrations
measured using a thermal–optical analysis method. The moisture con-
tent of each piece of fuel wood was measured using a moisture meter
(Delmhorst, J-2000). Soft (pine and fir) and hard (oak) woods were
used in an equal number of testswith both stove types. Softwood pieces
were saw-cut to approximately 15 cm long with a square cross-section
of approximately 4 cm2 and hard wood pieces were hatchet-cut to a
similar size but irregular shape. The variability in the laboratory test re-
sults could probably be further reduced by using consistent quality
wood with more consistent dimensions.

The BDS and TSF were compared using a modification of the WBT
V3.0 protocol. The WBT is intended to provide a method to compare
the performance and emissions of different stoves in completing a de-
fined standardized task (Bailis et al., 2007). In our modified protocol, a
fire is ignited and maintained by periodic feeding of fuelwood to bring
2.5 L of water in a 2.3 kg metal Darfur pot (without pot lids) to boil
and subsequently maintain it on simmer for 15 min, whereupon the
fire is extinguished and the mass of remaining fuelwood is measured.
The WBT suggests a default test volume of water of 5 L. We chose to
test with 2.5 L of water, because it reflects the actual volume of food
stove users prepare at a time. Our previous testing results show no sig-
nificant difference of time to boil between cold start and hot start for
both the BDS and TSF. Therefore, only one high-power phase (cold
start) was included in each test. Note that the International Organiza-
tion for Standardization (ISO) International Workshop Agreement
(IWA) metrics average high-power (cold start and hot start) values
(http://www.pciaonline.org/files/ISO-IWA-Cookstoves.pdf). When
three WBT replicate tests are performed, n is equal to 6.

One of themainmetrics in our modifiedWBT test is the time to boil.
In an important report by theUnited States Agency for International De-
veloping (USAID, 2008), authors state, “Fuel-efficient stoves can deliver
numerous benefits to end-user households, including fuel and time sav-
ings.” This underlineswhatwe found in ourwork inDarfur, time savings
are indeed important to the users. Moreover, we learned from our field
partners that the most attractive feature of the BDS is that the stove
could take their drinkingwater to boiling in less than 5min. The refugee
women in Darfur IDP camps have named the BDS in Arabic “Kanun
Khamsa Dagaig” (i.e., “the 5-min stove”), indicating this as the single
most important feature of the BDS from their perspective. Therefore,
we believe that “time to boil” is an important testing matrix from the
user perspective and consequently, it is important for us to examine
for both the BDS and TSF.

Stove testers control the fuel feeding rate that determines the time
to boil. Two trained stove testers were employed for all the tests
in this study. The average fuel burning rates for the BDS and TSF are
12.2 ± 0.9 g/min and 13.8 ± 1.3 g/min (mean ± 1SD), respectively.
These values indicate that the fire tending skill of the two testers is
very consistent. Please note in other areas of the world where fuel is
more abundant and inexpensive compared to Darfur, users often sacri-
fice fuel consumption for time savings. As shown in Fig. 1, the BDS has a
small fire box opening to prevent usingmore fuel wood than necessary.
The TSF has no such restriction, so it can achieve a higher fuel burning

http://www.pciaonline.org/files/ISO-IWA-Cookstoves.pdf)


Fig. 2. Histogram of time to boil data for the BDS and the TSF.
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rate than the BDS, therefore, the TSF could have a shorter time to boil if
fuel consumption is not an issue. The detailed testingmethodology and
results are given by Kirchstetter et al. (2010).

Data analysis

Stove performance is strongly influenced by the skill of the person
tending the stove. Dozens of tests were practiced by trained stove tes-
ters on both the TSF and BDS, and these data were discarded before
performing the tests to produce the data reported in this paper. This en-
sured that the variability observed in the test results was not being pri-
marily influenced by increasing the skill of the tester in tending the
stove. There were 20 and 21 tests completed for the TSF and BDS for
data analysis, respectively. All instrumentations discussed above oper-
ated properly during these 41 tests. The statistical analysis was per-
formed using Statistical Analysis System (SAS Institute Inc., version 9)
and R (http://www.r-project.org/).

Results and discussion

Data overview

The stove performance and emission results of 21 BDS tests and 20
TSF tests are comprehensively presented in Kirchstetter et al. (2010).
The moisture content and dry mass of the soft and hard woods were
similar to each other and were the same for the TSF and BDS tests. The
completion of tests with softwood (10 tests) required about 90% of
the time duration and 90% of the wood mass compared to those with
hard wood (10 tests).

The data of time to boil and PM2.5 emission factor (g/g of fuel con-
sumed) for the TSF and BDS are selected for the statistical analysis in
this study. We understand that PM2.5 emissions per energy delivered
to the cooking pot (g/MJ delivered) is an important metric of cookstove
performance, because it is based on the fundamental desired output —
cooking energy — that enables valid comparisons between all stoves
and fuels (Smith et al., 2000). Also cooking energy tends to have less
variation than time to boil, so it might require a smaller number of rep-
licates. However, the data for the mass of water evaporated and the
mass of fuel consumed during cold start were not collected when
these tests were conducted. Thus, a shortcoming of this study is that it
is not possible to calculate the emission factors based on energy deliv-
ered to the pot.

The histogramplots of these data are shown in Figs. 2 and 3. The CDF
plots for the same data are shown in Figs. 4 and 5. On average, cooking
tests with the BDS were completed in 74% of the time for the TSF (30.3
min vs. 41.0 min). There was less variation in time to boil with the BDS,
as indicated by a narrower spread in the CDF curves for the BDS com-
pared to the TSF (Fig. 4). The average PM2.5 emission factor for
the BDS tests was 80% of that for the TSF (3.1 g/kg-wood burned vs.
3.9 g/kg-wood burned). PM2.5 shows large test-to-test variability. The
distributions of the BDS and TSF PM2.5 data overlap substantially, but
the question to answer is whether data from the BDS and TST tests
show performance data that are different and discernible.

Number of replicate tests to estimate the mean

Wenowdiscuss the number of replicate tests needed to estimate the
experiment mean within a user-defined level of confidence. For exam-
ple, suppose the analyst desires to compute the expected boil time of
the BDSwithin a range of plus orminus 2min. Suppose also that the an-
alyst desires the certainty of that estimate to be 95%. In other words, the
analyst is saying, “I would like to know the number of replicate tests
needed to compute the average time to boil the BDS within a range of
4 min, and I want to know that range with a confidence of 95%.” Fig. 6
shows the number of replicates needed for three probability levels
(0.1, 0.05, and 0.01), which correspond to confidences of 90%, 95%,
and 99%, respectively. We compute the number of replicates using
Eq. (3). The x-axis represents the number of replicates ranging from 1
to 25. The y-axis represents the width of the confidence interval about
themean, which is twice the E value in Eq. (2). As can be seen in the fig-
ure, the smaller the confidence interval about the mean desired, the
larger the number of replicates required.

As the 0.05 probability in Fig. 6 shows, if thewidth of the confidence
interval for the mean time to boil is 4 min at the probability of 0.05, 7
replicates are required. Note that σ for the underlying distribution in
Eq. (2) is calculated based on the original 21 replicate tests. If only
two replicates are conducted, the width of the confidence interval
about the mean is 38 min at the probability of 0.05 (191 min for the
probability of 0.01, 19 min for the probability of 0.10). When the num-
ber of replicates increases to 5, thewidth shrinks to 5.3min at the prob-
ability of 0.05 (8.8 min for the probability of 0.01, 4.1 min for the
probability of 0.10). The width of the confidence interval about the
mean is relatively stable when the number of replicates is greater than
15. A similar trend is observed for the BDS PM2.5 emission factor data.
The width of the confidence interval about the mean BDS PM2.5 emis-
sion factor is enormous for n b 5, and becomes steady when n N 10.

http://www.r-project.org/)
image of Fig.�2


Fig. 3. Histogram of PM2.5 emission factor data for the BDS and the TSF.

Fig. 4. Cumulative distribution function (CDF) of time to boil data for the BDS and the TSF.
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Number of replicate tests to compare two stoves

We now discuss how many replicate tests are needed to confirm
whether the performance of two stoves is indistinguishable, within a
level of confidence. In essence, we test whether the underlying statisti-
cal distribution of the two stoves for themean boil time or emission fac-
tor are the same. Fig. 7 shows the probability as a function of thenumber
of replicates calculated using the K–S test.

On the x-axis is the number of replicates. For every replicate number,
we generated 50,000 bootstrap samples using the original 21 replicate
tests for the BDS and 50,000 bootstrap samples using the original 20
TSF replicate tests. For each pair of samples, we compute the probability
(p value) that they come from the same distribution.We then compute
the ratio, or probability, of the number of pairs that come from the same
distribution divided by 50,000 with a confidence of 95%. The y-axis
shows the resulting probability.When the number of replicates is great-
er than 6, the probability that the BDS and the TSF time to boil data are
from two different distributions is greater than 95%. For the PM2.5 emis-
sion factor data, 30 replicates are required to ensure that at least there is
95% chance that the BDS and the TSF samples are drawn from two dif-
ferent distributions.
A practical approach to assess the number of replicate tests

The difficulty with estimating the number of replicate tests needed
for one particular stove is the lack of prior knowledge about the expect-
ed σ of the planned experiments. We knew the σ for the above demon-
stration because we had already conducted 21 replicates.

In the absence of the σ, the experiment designer must speculate
on the variance. We recommend reviewing the literature of similar
stoves to pose a notional variance. In the absence of such data, then
the designer must use any other information as a starting point,
such as the variance computed from the TSF and BDS replicates re-
ported here. Note that the σ values for the BDS and TSF for time-to-
boil are 2.1 min and 5.6 min, respectively, and for emission factor for
PM2.5 they are 1.2 g/kg-wood and 1.0 g/kg-wood, respectively. The σ
values calculated for all measured variables are summarized in Table 3.

Note the wide difference in the three-stone-fire and the Berkeley–
Darfur Stove. The former is a setup with three stones with irregular
shape, and the dimensions and shape and spacing of the stones can
vary from test to test. The results reported in the literature have gener-
ally been with consistent dimensions, shape, and spacing of the stones
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Fig. 5. Cumulative distribution function (CDF) of PM2.5 emission factor data for the BDS
and the TSF.

Fig. 6. Thewidth of the confidence interval about themean as a function of the number of
replicate tests at three probability levels (0.1, 0.05, and 0.01) for the BDS time to boil and
PM2.5 emission factor data. For example, if the width of the confidence interval for the
mean time to boil is 4 min at probability levels of 0.1, 0.05, and 0.01, 5, 7 and 12 replicates
are required, respectively, as indicated by the black horizontal dash line and the black ver-
tical arrows.
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(or bricks). This factor may have caused more variation in our TSF re-
sults compared to literature values. In contrast, the BDS is precisely an
engineered metal stove of fixed dimensions. The remarkable point is
that while there is a difference in the σ values for the time to boil,
there is not a large difference in the σ values for emission factors of
the TSF and BDS despite the significant design difference. So, we recom-
mend starting conservatively, with the notional σ similar to the value
for the TSF. If the designer's stove or testing conditions are likely to
show less variation, then perhaps start with a notional variance that is
10% less. Conversely, our BDS experimentwas conducted in a controlled
laboratory setting. If the designer expects greater variation in the exper-
iment (say, owing to variable field conditions), then begin with a no-
tional variance of 10, 50, or even 100% greater. For example, when
testing fan-assisted stoves, which burn engineered wood pellets, we
might start with a notional variance that is 10% smaller than was
found here owing to the uniform nature of the engineered fuel pellets.
On the other hand, when testing an open fire (thefire is open complete-
ly to the ambient environment), we might begin with a notional vari-
ance that is twice that of the TSF (three stones or bricks are places
between the fire and the ambient to provide the support to the cooking
pot and some insulation of the fire) laboratory tests reported here.

With a notional variance, the designerwould proceedwith Eq. (3) to
compute the number of replicates needed based on the desired size of
confidence interval (E) and the level of confidence desired (α). Remem-
ber also that test conditions change, instruments malfunction, and in-
terpretation of tests differs (such as the precise time of onset of hard
boil, or the precise duration that water simmer, can be questionable).
These factors should also be considered beyond what is computed
from the above statistics to arrive at the number of replicate tests.
More replicate tests should be planned than required by the statistical
estimation to compensate for these unusual occurrences. This also in-
creases themargin of safety in case the variability in the underlying dis-
tribution, represented by the standard deviation (σ) in Eq. (2), is larger
than anticipated. A conservative margin of 100% is recommended based
on our abundant stove laboratory testing experience.
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Fig. 7. Kolmogorov–Smirnov test result showing the probability of the BDS and the TSF
bootstrap samples are drawn from two different distributions as a function of the number
of replicate tests for the time to boil and PM2.5 emission factor data.
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With the number of replicate tests determined, the experimenters
conduct the tests. With these data now in hand, the experimenters
can calculate the actual, observed variance computed from the experi-
ment. This value should be used to estimate the analysis results. One
might need to conduct additional replicate tests to achieve the desired
confidence interval and desired level of confidence in themean estima-
tion from the test results.
Table 3
Summary of the standard deviation values (σ) of all measured variables for the
BDS (n = 21) and the TSF (n = 20).

TSF BDS

Time to boil (minute) 5.6 2.1
Dry wood burned (g) 75.4 33.6
CO emission factor (g/kg-wood) 6.8 5.8
PM2.5 emission factor (g/kg-wood) 1.0 1.2
BC emission factor (g/kg-wood) 0.3 0.5
Conclusions

Our results showmoderate inherent variability (coefficient of varia-
tion up to 0.4) among the TSF's and BDS' time to boil and PM2.5 emission
measurements based on the modified WBT protocol. We demonstrate
using these data as examples that some stove laboratory testing results
could be misleading if only a small number of replicate tests were con-
ducted. However, there are costs associatedwith increasing the number
of replicates. The average value of any measured parameter should be
always reported together with the number of replicates conducted
and the uncertainty (e.g. standard deviation or confidence interval).
Cautions must be exercised in the interpretation of results based on
only a few replicates.We then describe a practical approach to calculate
the number of replicate tests needed to obtain useful data from previ-
ously untested stoves.

The implications of these results include the following: (1) In the
stove design and laboratory testing phase, researchers need to conduct
a relatively large number of replicate tests to ensure with some confi-
dence that the improvements of stove performance and emission levels
are truly achieved. (2) In the stove field testing phase, even more tests
are required because of the less controlled testing environment and
the associated larger inherent variability within the replicates. (3) In
the stove dissemination and adoption phase, decisionmakers and policy
analysts should take into consideration the variability and confidence
intervals of the laboratory andfield testing results prior to any decisions.
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