
Electrification of Residential Buildings: Draft Results of Energy and Emissions Savings Analysis

Dr. Alex Karambelas, Coralie Cooper, Barbara Morin, Mahdi Ahmadi

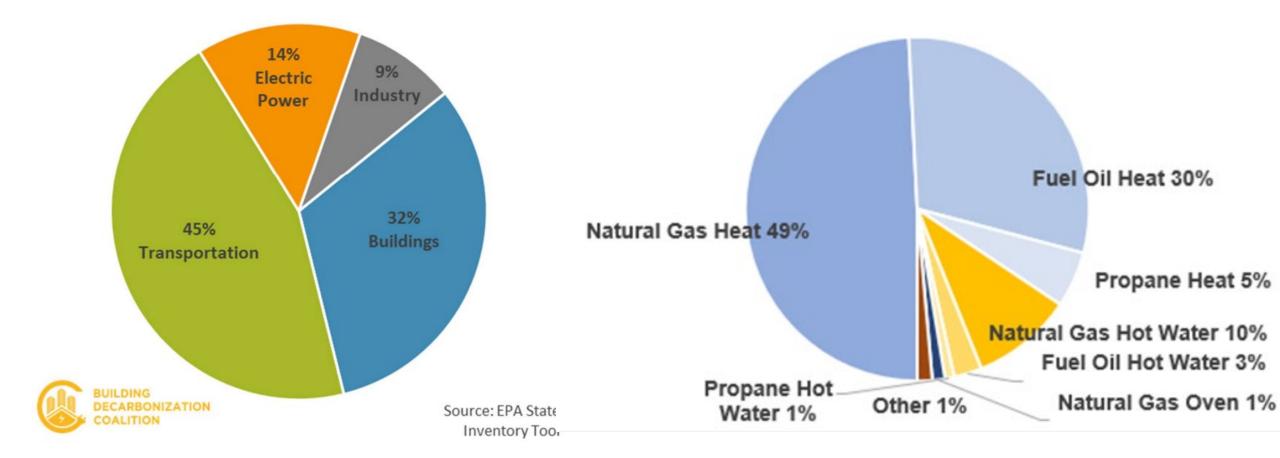
November 15, 2022

Northeast States for Coordinated Air Use Management (NESCAUM)

- NESCAUM is the regional nonprofit association of state air quality agencies in the Northeast.
- Our purpose is to provide scientific, technical, analytical, and policy support to our member states.

Presentation Overview

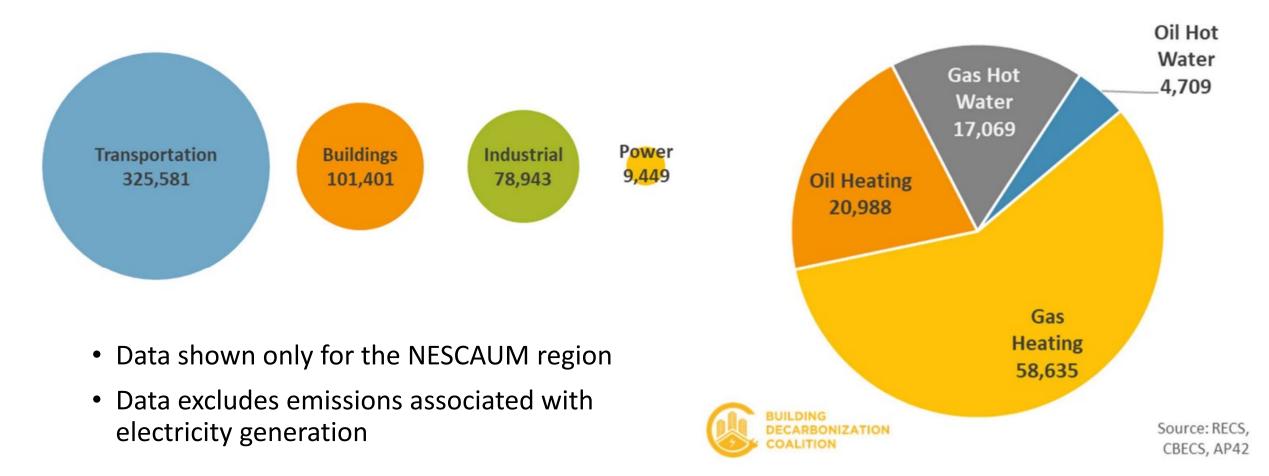
- Goals of the study
- Background
- Method
- Findings
- Conclusions and Next Steps



Goals of the Analysis

- Estimate the potential criteria and GHG emissions savings of:
 - Switching residential space heating from fossil fuels to heat pumps;
 - Switching residential electric resistance heat to heat pumps;
 - Switching residential fossil fuel and resistance heat powered hot water heaters to heat pumps; and
 - Switching residential clothes dryers and stoves to heat pump/induction stoves from fossil fuels.
- Expand on an analysis conducted last year for one state (CT) using the Department of Energy/National Renewable Energy Laboratory (NREL) ResStock analysis tool.

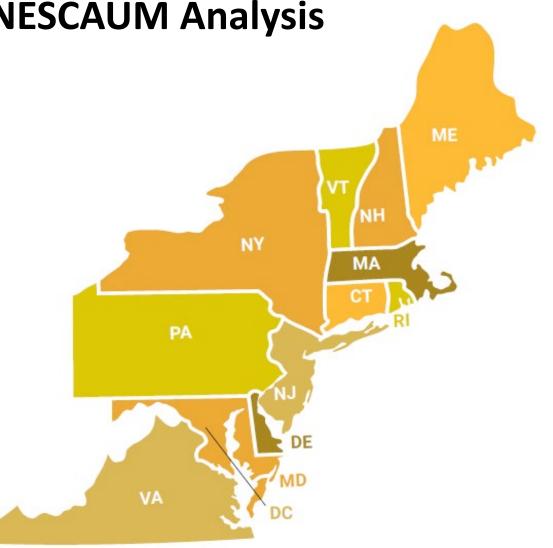
Building-Related CO2 Emissions



Source: ResStock Baseline Scenario

The above chart is for the eight NESCAUM member states

NOx Emissions from On-Site fossil fuel Combustion in Residential Buildings



Geographic Area of the NESCAUM Analysis

- 13 states/jurisdictions in the Northeast and mid-Atlantic.
- Results are provided for the 13 jurisdictions combined.
- Final results will also be available for individual states and the District of Columbia.
- The analysis expands on a 2021 study that estimated emission reductions from building electrification in Connecticut.

ReStock Analysis Tool

- Models energy consumption/savings & avoided CO₂ emissions in 48 states.
- Meteorology from three calendar years was taken into account to determine heating and cooling requirements.
- 550,000 representative dwelling units for each run:
 - One for every 240 residential units that exist in the U.S.
- 100+ home characteristics based on data from EIA Residential Energy Consumption Survey and US Census American Household Survey and American Community Survey (e.g., climate zone, building type, vintage, occupants, floor area, heating/cooling, appliances, insulation, windows).
- 10 measure packages (basic & enhanced enclosure, min- & high-efficiency heat pumps w/wo electric backup, heat pump water heaters, min- & highefficiency whole home electrification w/wo enhanced enclosure).

ReStock Analysis Tool (Continued)

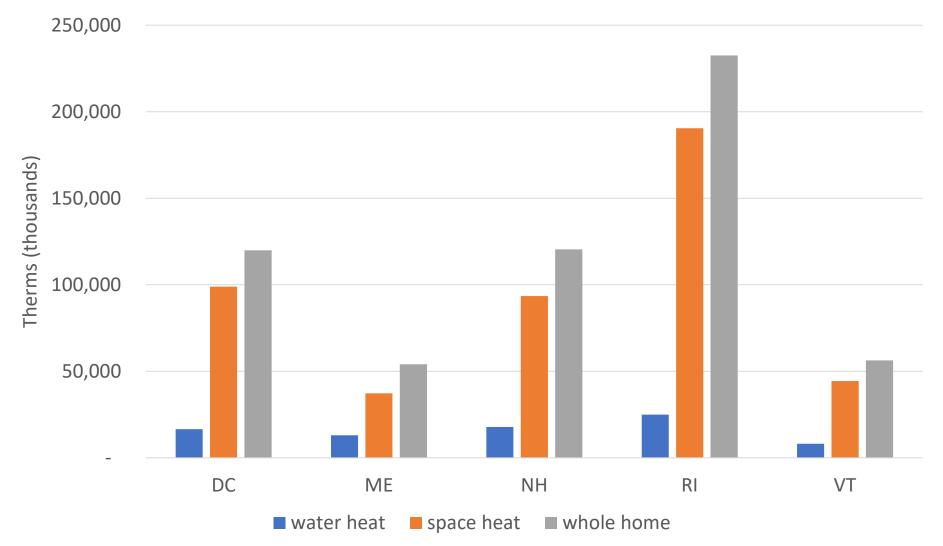
- Energy savings calculated for states by comparing energy consumption for three ResStock scenarios with baseline consumption:
 - High Efficiency Heat Pumps with Electric Backup (space heating)
 - Heat Pump Water Heaters (water heating)
 - Whole Home High Efficiency Electrification, no enhanced enclosures (whole home)
- NESCAUM calculated on-site emissions using AP-42 emissions factors for fuel oil, natural gas, and propane furnaces.
- Upstream emissions were calculated by multiplying change in electricity (mWh) by emission factors from New England ISO and eGrid

Electricity-Related Emission Factors Used in the Analysis

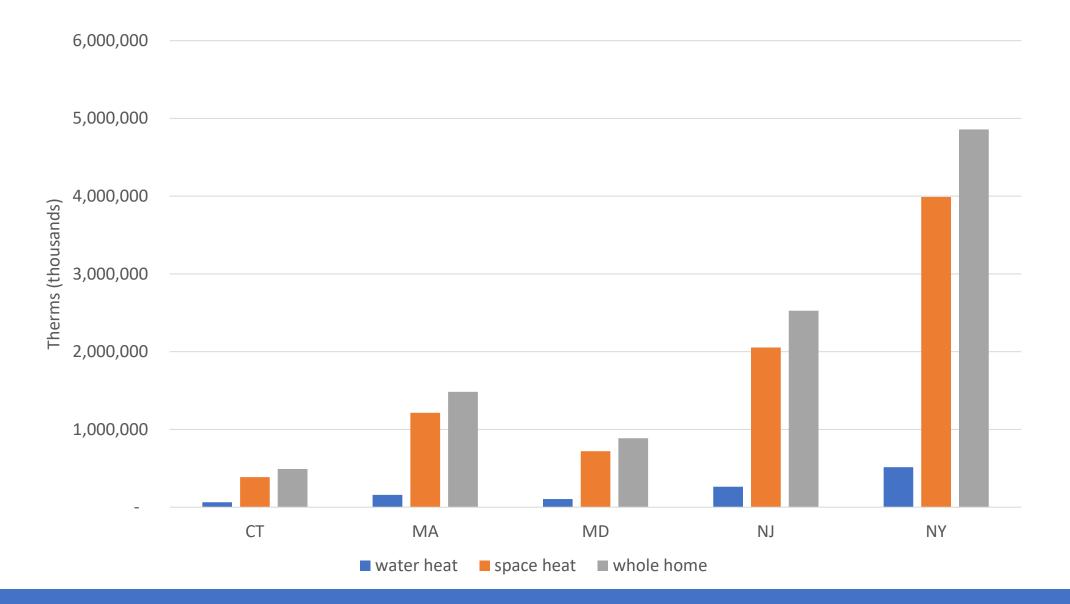
State	NOx (lb/MWh)	SO2 (lb/MWh)	CO2 (lb/MWh)
NE ISO	0.11	0.02	706
СТ	0.11	0.02	706
MA	0.11	0.02	706
ME	0.11	0.02	706
NH	0.11	0.02	706
RI	0.11	0.02	706
VT	0.11	0.02	706
DC	3.2	0.04	797
DE	0.32	0.35	695
MD	0.26	0.29	735
NJ	0.24	0.06	543
NY	0.2	0.04	377
PA	0.4	0.5	755
VA	0.3	0.1	633

Source: ISO New England 2022 and EPA eGRID 2020

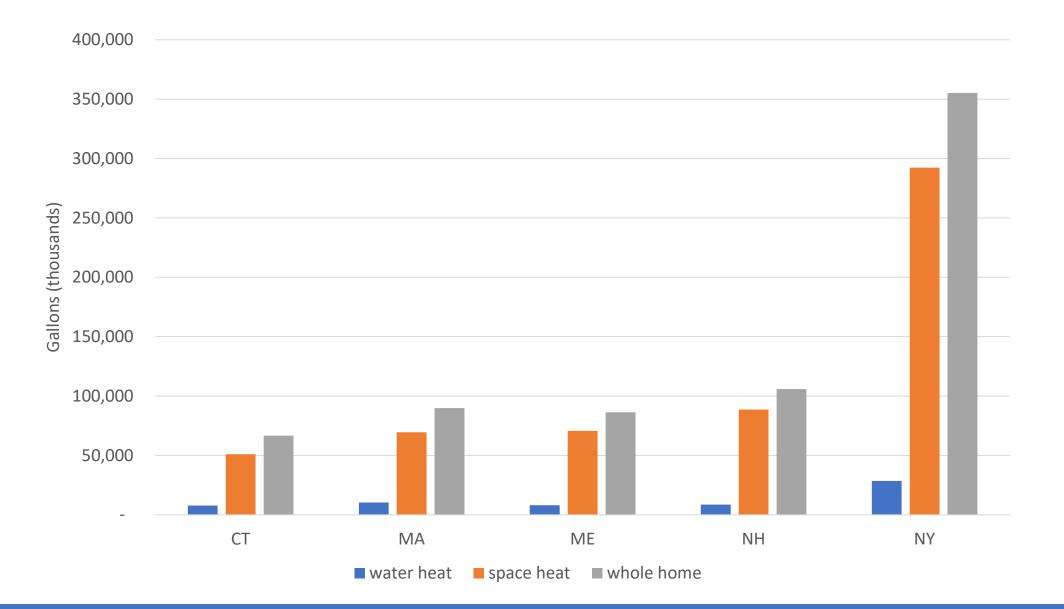
Assumptions


- The analysis assumes all technically feasible appliance conversions in the 13jurisdiction area.
- Technologies are applied by the model without regard to cost:
 - Economic barriers may reduce introduction of technologies as seen in the earlier NESCAUM analysis with ResStock.
- There is no phasing in of electrification in the analysis, only a complete conversion occurring from today's baseline. This is designed to illustrate the maximum potential we can expect in terms of emissions reductions with residential building electrification.
- We have not estimated any change in electricity-related emissions due to electricity sector decarbonization efforts.
- No additional improvements were assumed to building envelopes.
- 95% 100% of residences assumed to have appliance conversions in the 13jurisdiction region.

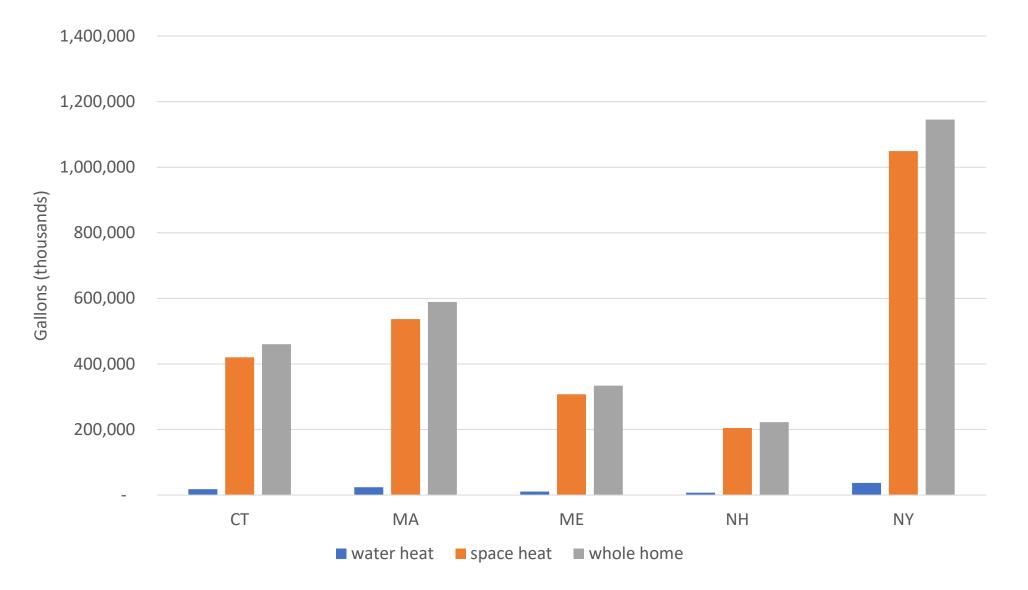
Results



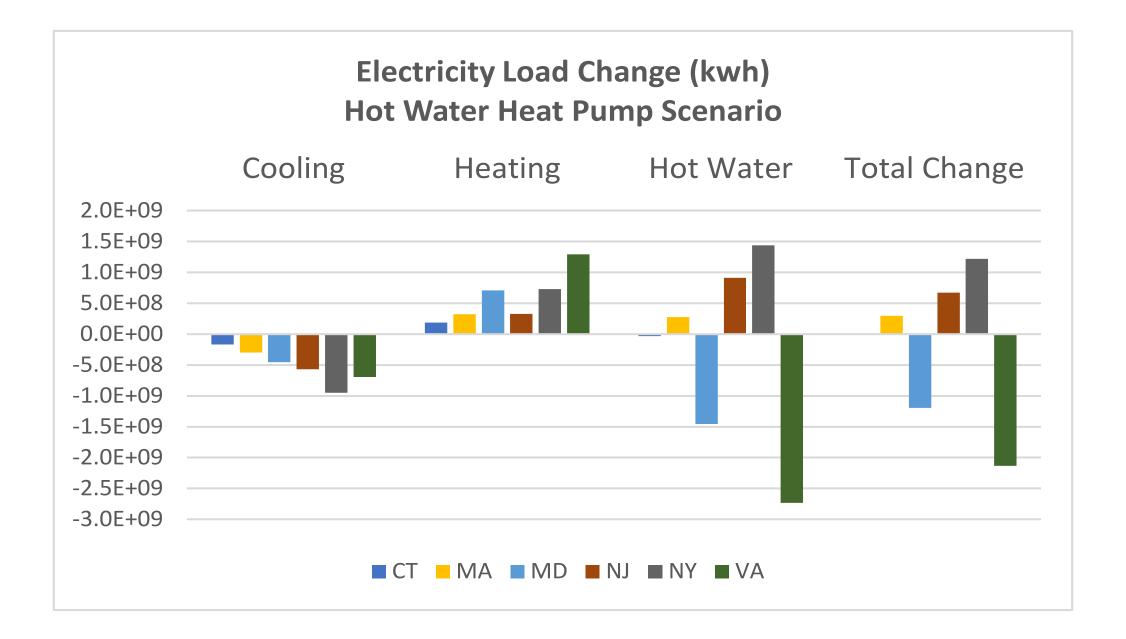
Estimated Therms of Natural Gas Saved Smaller States/Jurisdictions



Estimated Therms of Natural Gas Saved (larger states)



Estimated Gallons of Propane Saved (Selected States)



Estimated Gallons of #2 Fuel Oil Saved (Selected States)

Potential Emissions Reduced in the Northeast and Mid-Atlantic

Scenario	CO ₂ Reduction (annual tons)*	NOx Reduction (annual tons)*	PM2.5 Reduction (annual tons)
Hot water heater conversion	12,708,728	9,819	637
Space heating conversion	103,432,766	86,406	5,222
Whole home conversion	127,530,194	104,578	6,308
includes upstream emissions associated with electric generating units			

Source: NESCAUM and OTC draft analysis using NREL ResStock outputs

Hot Water Heater Conversions: Potential Emissions Reduced by State

	On-site + Upstream		
	NOx	CO ₂	
СТ	492	640,539	
DC	178	108,233	
DE	108	165,134	
MA	981	1,181,133	
MD	638	1,038,847	
ME	205	279,109	
NH	206	263,365	
NJ	1,240	1,511,630	
NY	2,739	3,412,063	
PA	1,854	2,381,448	
RI	159	191,032	
VA	912	1,408,415	
VT	107	127,781	
Sum	9,819	12,708,728	

- Annual regional reduction in CO₂ equivalent to 1.4 billion avoided gallons of gasoline combusted
- 3 million cars taken off the road for one year

Emissions equivalencies source: EPA GHG equivalency calculator (https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results)

Whole Home Conversion: Potential Emissions Reduced by State

	On-site + Upstream		
	NOx	CO ₂	
СТ	5,980	6,992,219	
DC	1,291	899,871	
DE	1,195	1,598,145	
MA	11,350	12,261,208	
MD	6,455	9,679,517	
ME	3,101	2,760,924	
NH	2,826	2,740,073	
NJ	12,629	15,397,822	
NY	30,499	38,006,797	
PA	18,308	22,576,156	
RI	1,824	1,919,383	
VA	7,651	11,590,890	
VT	1,470	1,107,189	
Sum	104,578	127,530,194	

- Annual regional in CO₂ equivalent to 14 billion avoided gallons of gasoline combusted
- 27 million cars taken off the road for one year

Emissions equivalencies source: EPA GHG equivalency calculator (https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results)

Conclusions: Energy Consumption

- More natural gas is reduced than any other fuel type in all scenarios.
- 4 billion gallons of fuel oil and 14 billion therms of natural gas, and 1 billion gallons of propane could be reduced through whole home electrification.
- With whole home conversion, ResStock estimates a net increase in 54,000 gWh of electricity in the 13-jurisdictions annually will occur.
- In three jurisdictions (DC, DE, and MD) electricity consumption is projected to be reduced with whole home electrification:
 - This is due to relatively inefficient air conditioning systems in the baseline
 - Also due to resistance heat in the baseline
- In all three scenarios (hot water, space heating, and whole home) total energy consumption decreases significantly.

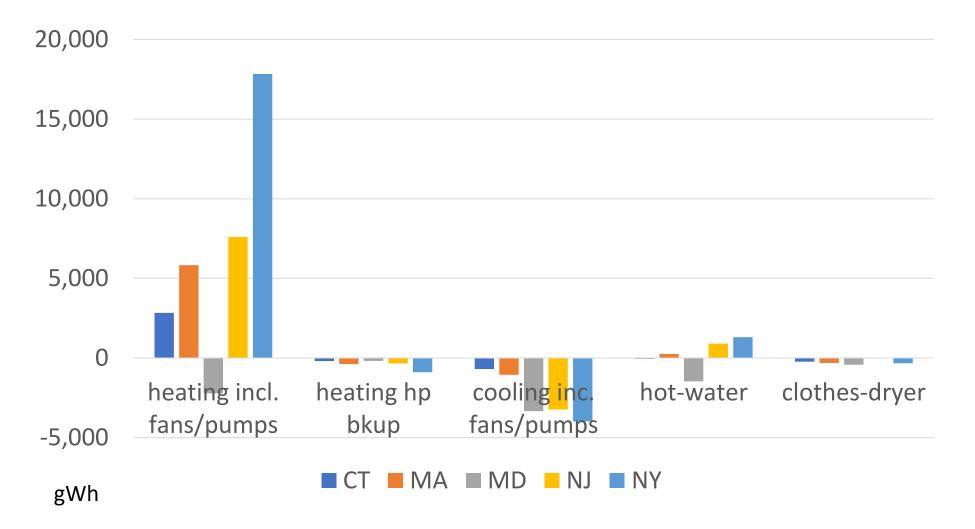
Conclusions: Emission Reductions

- With a switch of all housing units in the region to heat pumps for space heating, water heating, clothes drying, and cooking, 104,000 tons of NOx, 6,000 tons of PM_{2.5}, and 127 million tons of CO₂ could be reduced annually (with upstream emissions factored in).
- A conversion of fossil fuel and electric resistance heat hot water heaters to fuel pumps could reduce over 12 million tons of CO₂ and 9,000 tons of NOx annually.
- Electricity-related emissions cause an increase of 4,000 tons of NOx and 13 million tons per year of CO₂, with current grid emissions assumed. Net emissions reductions still far exceed these tons.
- Significant reductions in electricity-related emissions are realized from conversion from conventional A/C and resistance heating systems to heat pumps.
 - Although this reduction will shrink as jurisdictions move to lower carbon electricity sources

Next Steps:

- Consider evaluation of health benefits using EPA's COBRA model.
- Finalize draft report summarizing the study and distribute to states for review.
- Present findings to NESCAUM and/or Ozone Transport Commission Air Directors.
- Make publicly available when finalized.

Thanks to:


State staff who provided input on the 2021 analysis The NREL ResStock team

Additional Slides

Estimated Change in Electricity Consumption – Selected States

Source: NREL ResStock outputs

Package #4 Description – Heat Pump High Efficiency

- Centrally ducted heat pump, variable-speed mini-split, SEER 24, 13 HSPF
 - Apply to dwelling units with ducts and no heat pump or a less efficient heat pump (SEERs < 24; HSPFs < 13)
 - Sized to ACCA Manual S
 - Backup heat provided by electric resistance, active when the heat pump can't meet the load
- Ductless variable-speed mini-split heat pump SEER 29.3 14 HSPF 7
 - Apply to dwelling units without ducts and no heat pump or a less-efficient heat pump (MSHP SEER 14.5, 8.2 HSPF or MSHP SEER 29.3, 14 HSPF not sized to max load)
 - Sized to max load
 - Backup heat provided by electric resistance, active when the heat pump can't meet the load

Package #6 Description – Heat Pump Water Heaters

- 50 gallon, 3.45 UEF heat pump
 - For dwelling units with 1-3 bedrooms and an existing water heater other than an electric tankless water heater
- 66 gallon, 3.35 UEF
 - For dwelling units with 4 bedrooms and an existing water heater other than an electric tankless water heater
- 80, 3.45 UEF
 - For dwelling units with more than 4 bedrooms and an existing water heater other than an electric tankless water heater

Package #8 Description – Whole Home Electrification

- No enclosure measures
- High-efficiency heat pump (Measure Package 4) for all dwelling units with nonelectric heating or less-efficient electric heating
- Heat pump water heater for all dwelling units with non-electric heating or lessefficient electric water heating
- Ventless heat pump dryer (CEF=5.2) for all dwelling units with non-electric dryers or less-efficient electric dryers
- Electric oven and induction range for all dwelling units

