Diesel Turbo-compound Technology

ICCT/NESCCAF Workshop

Improving the Fuel Economy of Heavy-Duty Fleets II

February 20, 2008

Volvo D12 500TC

How Turbocompound Works

- 20-25% of Fuel energy in a modern heavy duty diesel is exhausted
- By adding a power turbine in the exhaust flow, up to 20% of exhaust energy recovery is possible (20% of 25% = 5% of total fuel energy)
- Power turbine can actually add approximately 10% to engine peak power output
 - A 400 HP engine can increase output to ~440 HP via turbocompounding
 - However, due to added exhaust back pressure, gas pumping losses increase within th diesel, so efficiency improvement is less than T-C power output
 - Maximum total efficiency improvement is 3-5%
- Turbine output shaft is connected to crankshaft through a gear train for speed reduction
 - Typical maximum turbine speed = 70,000 RPM; crankshaft maximum = 1800 RPM
- An isolation coupling is required to prevent crankshaft torsional vibration from damaging the high speed gears and turbine

Turbocompound Thermodynamics

- When exhaust gas passes through the turbine, the pressure and temperature drops as energy is extracted and due to losses
- The power taken from the exhaust gases is about double compared to a typical turbocharged diesel engine
- To make this possible the pressure in the exhaust manifold has to be high
- This increases the pump work that the pistons have to do
- The net power increase with a turbo-compound system is therefore about half the power from the second turbine
 - E.G. for 10% power increase, there is a 5% efficiency improvement
- The higher pressure in the exhaust manifold results in slightly more of the exhaust gases being trapped in the cylinder during scavenging
 - This can be seen as a kind of internal EGR

TURBOCOMPOUND ADVANTAGES

- High power density (more power for a given displacement)
- Good fuel consumption in right application
 - Best in highly loaded applications
 - Estimate of 3% less fuel consumption in long haul application
 - Minimal or negative impact at light load
- Very good engine response and drivability
- Since exhaust manifold pressure is increased above intake manifold pressure
 - Higher EGR-flow can be achieved more easily to facilitate low NOx emissions
- The internal EGR mentioned earlier decreases NOx in a non-EGR engine

TURBOCOMPOUND ISSUES

- Gear train, fluid coupling, and power turbine add weight, complexity (reliability concern), and cost
- Minimal to negative efficiency gain in light load applications
- Exhaust energy decreases with cooled EGR due to energy extracted into cooling system.
 - Less energy available to power turbine
- Space requirements further constrain packaging of EGR and turbocharge
- Added complexity in Design, Control, Service
- Additional cooling of exhaust reduces the effectiveness of exhaust aftertreatment systems
 - May require more active regenerations for particulate filter
 - Reduces the time when NOx systems are effective (LNA, SCR, or LNC)

Electric Turbocompound Alternatives

ROTOR STATOR TURBINE

Separate Turbine with Generator

Adds flexibility in locating and packagingIncreases control flexibility

Integrated into Turbocharger Bearing Housing

E Turbocompound System:

- Instead of driving mechanically through a gear train, the turbine output shaft is connected to an electrical generator.
- Power can be fed into the vehicle electrical demand or stored in batteries.

Advantages of ETC

- Increases ability to control turbine power output and speed independently of engine load and speed
- Can use motor/generator to speed up turbo when desired
 - Potential for better performance and emissions control

Electric Turbocompound with Electric Auxiliaries an Mild Hybrid for Long Haul Trucks

Turbocompound Production Status

Detroit Diesel TC Engine for US07

Many Engine Manufacturers hav or will have Turbocompound Er

- Volvo produced D12 500TC from 2002 2006 (Euro only). Working to develop new Volvo D13
- Detroit Diesel announced TC available in USA on new DD15 engine
- Iveco in production for Case-New Holl (off-highway)
- Scania in production (Euro only)
- Cummins, CAT, Merceded, and Interna have demonstrated technology

Turbocompound Future

Expect to see more application due to:

•Fuel Costs

•Lower CO₂

•Electrification of Auxiliaries

•Better control capability

Thank You!

