ICCT / NESCCAF Improving the Fuel Economy of Heavy Duty Fleets II

Session 2: Global Efforts to Encourage Heavy-Duty Vehicle Fuel Economy Improvements

Fuel Economy Test Procedure for Heavy-Duty Vehicles: Japanese Test Procedures

Susumu SATO

National Traffic Safety and Environment Laboratory

Environment Research Department

7-42-27 Jindaiji-higashimachi, Chofu, Tokyo, 182-0012, JAPAN

20 February 2008

Background & Current Situation

• Fuel Economy Test Procedure for Heavy-Duty Vehicles

• Summary

Contents

Background & Current Situation

CO₂ Emissions from Heavy-Duty Vehicles Top-Runner Standard for Fuel Economy

- Fuel Economy Test Procedure for Heavy-Duty Vehicles
- Summary

CO₂ Emissions from Heavy-Duty Vehicles

Fuel Economy Standard for HDVs

Top-Runner Standard for Fuel Economy

Target Standard Values based on Top-Runner Program

Based on the fuel economy of the most fuel efficient vehicle which is on sale (Energy Conservation Law)

Background & Current Situation

• Fuel Economy Test Procedure for Heavy-Duty Vehicles

"Simulation Method": Fuel Economy Test

Fuel Economy Test Procedure for Hybrid HDVs

• Summary

HDVs Fuel Efficiency Standard

"Heavy Vehicle Mode"

Urban Driving Mode = JE05 Mode (Emission Test Mode)

Interurban Driving Mode

= 80km/h Constant Speed Mode with Road Gradient

Evaluation of Fuel Efficiency by Simulation Method

Simulation Method Overview

National Traffic Safety and Environment Laboratory

for Heavy Vehicles, March 2003

Simulation Method Flowchart and Equation ²²³

$E=1/(\sum_{u}/E_{u}+\sum_{h}/E_{h})$

- E: Heavy vehicle mode fuel efficiency (km/L)
- E_u : Urban driving mode fuel efficiency (km/L)
- E_h : Interurban driving mode fuel efficiency (km/L)
- \sum_{u} : Proportion of urban driving mode
- \sum_{h} : Proportion of interurban driving mode

Driving Distance Proportion by Driving Mode

 $E=1/(\sum_{u}/E_{u} + \sum_{h}/E_{h})$

	Passenger vehicles (riding capacity : 11 persons or more)			Freight vehicles			
Vehicle Type	Ordinary bus		Route bus	Other than tractor		Tractor	
GVW	14 tons or less	Over 14 tons		20 tons or less	Over 20 tons	20 tons or less	Over 20 tons
Drive proportion							
Upper: <u></u>	0.9	0.65	1.0	0.9	0.7	0.8	0.9
Lower: \sum_{h}	0.1	0.35	0.0	0.1	0.3	0.2	0.1

Characteristics of Simulation Method

"Simulation Method"

- **# Actual Engine Measurement Test by Driving Mode**
- Based on real vehicle and engine specifications

Fuel consumption map

Engine related parameters

Drivetrain related parameters

- The method is an extension of the emission test.
 - \rightarrow Low cost and good test efficiency
 - → Problems of reproducibility of driving resistance

Other Notes 1

1. AT and AMT Vehicles

a). AT vehicle (equipped with torque converter)

Urban drive mode: $E_u \ge 0.91$

Interurban drive mode: $E_h \ge 0.96$

b). AMT (automated manual transmission) vehicle

Same as the ordinary MT vehicle

2. Vehicles equipped with a post treatment device with forced regeneration control

Vehicles equipped with a post treatment device such as continuous regenerative DPF (diesel particle filter) have a different engine control that cannot be covered by the normal operation fuel efficiency map.

Other Notes 2

3. Accuracy of the Simulation Method

 A fuel efficiency estimated by using "fuel efficiency map" based on the simulation method

VS.

• A fuel efficiency obtained by the vehicle-based actual measurement

The error by the simulation to the actual measurement

= Limited to about 0.4% irrespective of the types of HDVs

Background & Current Situation

• Fuel Economy Test Procedure for Heavy-Duty Vehicles

"Simulation Method": Fuel Economy Test

Fuel Economy Test Procedure for Hybrid HDVs

Summary

Introduction Background of HILS Test Method

- Fuel Efficiency Test
 - ⇒ simple method: Simulation Method
- Emission Test
 - ⇒ dynamo test with only engine: without electric system

System Bench Method for Hybrid Vehicles

- > The E/D system composed is complex
- > 4-wheel drive vehicles, in-wheel motor: need of multiple E/D

• Development of Hardware-In-the-Loop Simulator (HILS) Test Method

HILS System

N

Test Procedure Outline for Hybrid HDVs

Flowchart of HILS Test Method

National Traffic Safety and Environment Laboratory sys

Fuel consumption & exhaust emission test method for HD-HEVs using HILS system, National Car Environments Notice No. 281, March 2007

Background & Current Situation

• Fuel Economy Test Procedure for Heavy-Duty Vehicles

• Summary

Summary

- 1. Fuel Economy Target Standard Values for Heavy- Duty Vehicles were set in Japan for the first time in the world.
- 2. Simulation Method is an extension of the emission test, so that the cost of the fuel efficiency test is low and its test efficiency is good.
- 3. The New Fuel Economy Test Method for Hybrid HDVs that combined HILS and Simulation Method has been developed.

Thank You for Your Attention

Susumu SATO

e-mail: su-sato@ntsel.go.jp