

Taking on the Leadership Challenge in Class 8 Trucking

How To Double Class 8 Truck Efficiency — Profitably

Odd-Even Bustnes, Principal

Rocky Mountain Institute

22 February, 2005

Leadership would give advanced trucks AND profit: Save ~65% of baseline fuel @ average cost of 25¢/gallon

Better aero & tires, better engines, less weight

PACCAR high-eff. concept truck

Colani/Spitzer tanker (Europe), reportedly 11.25 mpg w/o engine changes

Two recent concept trucks

From 5.5-6.0 mpg to 11.8 mpg @ 60% IRR

 Aero drag, tires, mass, driveline, acc. loads, APU, engine

To ~16 mpg

• Operational & regulatory changes

Artist's rendition, aerodynamic tractor

Big haulers' margins would double to 6–7% v. 2003 baseline

Basic physics: Overcoming aerodynamic resistance consumes the majority of truck fuel on a typical highway

Source: Technology Roadmap for the 21st Century Truck Program (DOE 2000)

Breakdown of where a long-haul truck's total diesel goes: An excellent END-USE opportunity

Focus: End of chain [fuel] \rightarrow [engine] \rightarrow [drivetrain] \rightarrow [tractive loads]

* Assuming driver utilizes engine at 95% of max efficiency due to driving habits (probably much less than 95% in reality) Source: Technology Roadmap for the 21st Century Truck Program (DOE 2000), RMI analysis

Focus on END-USE: Reduce air drag + rolling resistance by 50%, idling by 80% saves ~50% of fuel — WITHOUT engine improvements

^{*} Assume no change in driver behavior from previous slide

Source: Technology Roadmap for the 21st Century Truck Program (DOE 2000), RMI analysis

Platform (1 of 3): Aerodynamics

Estimated Cost, Whole-System Cost, MPG-Effect, and Per-Gallon Cost; select measures

Aerodynamic Improvements	Gross up-front cost	Net up-front cost*	MPG Gain	Marginal cost of saved fuel**
	(2000 \$)	(2000 \$)		(\$/gal diesel)
Trailer wake vortex flare	\$500	- \$512	4.9%	- \$0.15
Cross-flow vortex trap device (CVTD)	\$500	- \$533	5.0%	- \$0.16
Cab deflector / sloping hood / cab side flares	\$1000	\$422	2.8%	\$0.27
Leading / Trailing edge and vortex strake device (VSD)	\$750	\$337	2.0%	\$0.32
Tractor-trailer gap / wheel wells / baffles / bumper	\$300	\$197	0.5%	\$0.96
Underbelly diffusers + enclosure and undercarriage flow	\$2500	\$1818	3.3%	\$1.38
Electronic vision system	\$1000	\$793	1.0%	\$2.04
Total	\$6550	\$2522		\$0.35

* Net up-front cost derived from avoided engine power (kW)

** Average cost weighted by MPG gain

Source: RMI analysis, Winning the Oil Endgame (2004, www.oilendgame.org/ReadTheBook.html), Heavy Trucking Annex (www.oilendgame.org/TechAnnex.html)

Platform (2 of 3): Rolling Resistance

Estimated Cost, Whole-System Cost, MPG-Effect, and Per-Gallon Cost; select measures

Tire Improvements	Gross up-front cost	Net up-front cost*	MPG Gain	Marginal cost of saved fuel*
(rolling resistance)	(2000 \$)	(2000 \$)		(\$/gal diesel)
Super singles	\$466	- \$76	4.0%	- \$0.03
Low rolling resistance***	\$181	\$59	3.0%	\$0.03
Automatic pneumatic pressure control	\$500	\$378	1.2%	\$0.76
Total	\$966	\$302		\$0.15

* Net up-front cost derived from avoided engine power (kW)

** Average cost weighted by MPG gain

*** Generally, super singles and low rolling resistance tires are mutually exclusive options. The total here assumes a choice of super singles combined with automatic pneumatic pressure control.

Source: RMI analysis, Winning the Oil Endgame (2004, www.oilendgame.org/ReadTheBook.html), Heavy Trucking Annex (www.oilendgame.org/TechAnnex.html)

Platform (3 of 3): Mass

Estimated Cost, Whole-System Cost, MPG-Effect, and Per-Gallon Cost; select measures

Weight reduction	Gros	s up-front cost	Net up-front cost*	MPG Gain	Marginal cost of saved fuel**
	(2	2000 \$)	(2000 \$)		(\$/gal diesel)
Total	\$2000		\$1449	10%	\$0.18
Tractor					
Eliminate two differentials		Eliminate about ≻ Ibs			
Aluminum for differential housing			out 5~7,000		
Eliminate 6-inch spacer blocks					
Super singles					
Etc.					
Trailer					
Alternative trailer floor materials		Eliminate ab	out		
Eliminate excess steel in trailer frame	2,000 lbs				
Etc.	J				

* Net up-front cost derived from avoided engine power (kW)

** Average cost weighted by MPG gain

Source: RMI analysis, Winning the Oil Endgame (2004, www.oilendgame.org/ReadTheBook.html), Heavy Trucking Annex (www.oilendgame.org/TechAnnex.html)

Beyond the first ~100 years: Sketch of further engine improvements (1 of 2)

Engine Improvements	Immediate for September?	2006 ?	2007 ~ 2008 ?	2009 ~ 2010 and beyond?
Off the shelf, low cost:	 Lower parasitic losses - water pump, engine fan, A/C compressor, compressor hood Advanced injection (high pressure, multi-event) Variable geometry turbochargers 	Gen-2 advanced injection	Bottoming cycles?Improved lubricants	 Full-range HCCI? Advanced fuels Advanced fuel mixes
Near-shelf, "accelerate the market" opportunity		Bottoming cyclesDual mode-HCCI	 Camless engines Advanced engine (injection, actuation, feedback) Syn-fuels, etc. Waste heat recovery 	Water injection??

Beyond the first ~100 years: Sketch of further engine improvements (2 of 2)

Engine Improvements	Efficiency Increase	NO _x Reduction	PM Reduction	HC Reduction	CO Reduction
	(% points)	(%)	(%)	(%)	(%)
Advanced Injection	2 ~ 4 % points				
HCCI	0.8 ~ 1.2 % points	90 ~ 98%		Unclear: increase or decrease	Increase?
FT Diesel		5 ~8%	20 ~ 26%	23%	35 ~ 39%
Water Injection	0.8 ~ 1.7 % points	80 ~ 95%	7.5%	7 ~ 24%	75 ~ 86%
Total *	3.6 ~ 6.9 % points	98.1 ~ 99.9%	26 ~ 31.5%	28.4 ~ 41.5%	83.8 ~ 91.5%

* Efficiency total is additive, emissions totals are cumulative. Totals treat the unclear HC and CO effects of HCCI as "no change."

Source: RMI analysis

Rocky Mountain Institute