LISTOS Measurements at the Yale Coastal Field Station (Guilford, CT) and in New York City

Jenna Ditto, Peeyush Khare, Drew Gentner

Chemical & Environmental Engineering School of Engineering and Applied Science

LISTOS Measurements at the Yale Coastal Field Station (Guilford, CT) and in New York City

Acknowledgements:

- Lukas Valin (EPA) et al.
- Pete Babich (CT DEEP) et al.
- David Wheeler and Dirk Felton (NYS DEC) et al.
- Paul Miller (NESCAUM)
- The Peabody Museum and Yale's Natural Lands Fund
- Rich Boardman, Tim White, and David Skelly (Yale/Peabody)
- Ethan Weed and Amir Bond (Peabody Evolutions Interns)
- Fred Moshery (CCNY)
- NOAA NYC collaborators: Brian McDonald, Carsten Warneke, Matt Coggon, Georgios Gkatzelis

Site Locations

Several typical trajectories of air parcels over ~1 day prior to arrival

Measurements (reference)

Coastal CT site (year-round)

- O₃
- PM_{2.5}
- Black carbon
- NO_x (NO/NO₂)
- CO
- CO₂
- SO₂

Offline gas- and aerosol-phase chemical speciation via adsorbent tubes and filters (incl. speciated VOCs and OA)

- Local meteorology
- AERONET (w/ F. Moshery, CCNY)

Inland CT site (Summer 2018)

- Boundary layer height via ceilometer
- O₃

NYC - Manhattan (with NOAA, Summer 2018)

 Offline gas- and aerosol-phase chemical speciation via adsorbent tubes and filters (incl. speciated VOCs and OA)

Ozone – Coastal CT site

Ozone – Coastal CT site

Ozone – Coastal CT and inland CT measurements

Boundary layer measurements – Inland site

Time of Day (Local)

Increasing influence of non-combustion sources on urban air quality

The fraction of total emissions from <u>known</u> consumer, commercial, and industrial products and materials is increasing

Khare & Gentner, ACP 2018

- Defines a comprehensive emissions framework
- Emissions over lifecycles
- Multiple emission pathways of solvents, solutes, and degradation by-products
- VOCs, IVOCs, and SVOCs
- Most are fossil fuel-derived and the SOA produced is often misattributed

Emissions Data: SoCAB, CARB inventory

Increasing influence of non-combustion sources on urban air quality

The fraction of total emissions from known consumer, commercial, and industrial products and materials is increasing and so are their contributions to SOA and ozone

- · Defines a comprehensive emissions framework
- Emissions over lifecycles
- Multiple emission pathways of solvents, solutes, and degradation by-products
- VOCs, IVOCs, and SVOCs
- Most are fossil fuel-derived and the SOA produced is often misattributed

Emissions Data: SoCAB, CARB inventory

Increasing influence of non-combustion sources on urban air quality

Yale-Johns Hopkins SEARCH Center Dense Urban Network in Baltimore

50+ stationary sites, 200+ participants with portable monitors

Zamora et al., ES&T 2019; Xiong et al., in prep

Measurements Summary

Coastal CT site (year-round)

- O₃
- PM_{2.5}
- Black carbon
- NO_x (NO/NO₂)
- CO
- CO₂
- SO₂

Offline gas- and aerosol-phase chemical speciation via adsorbent tubes and filters (incl. speciated

- VOCs and OA)
- Local meteorology
- AERONET (w/ F. Moshery, CCNY)

Inland CT site (Summer 2018)

- Boundary layer height via ceilometer
- O₃

NYC - Manhattan (with NOAA, Summer 2018)

 Offline gas- and aerosol-phase chemical speciation via adsorbent tubes and filters (incl. speciated VOCs and OA)

