## Canister Samples Collected Using the ASRC Mobile Laboratory During LISTOS 2018

### James Schwab, Jie Zhang

Atmospheric Sciences Research Center, University at Albany, SUNY

### Dirk Felton, Jackie Perry, Erica Shipley, Peter Furdyna

New York State Department of Environmental Conservation, BAQS





LISTOS Meeting 4/11/19







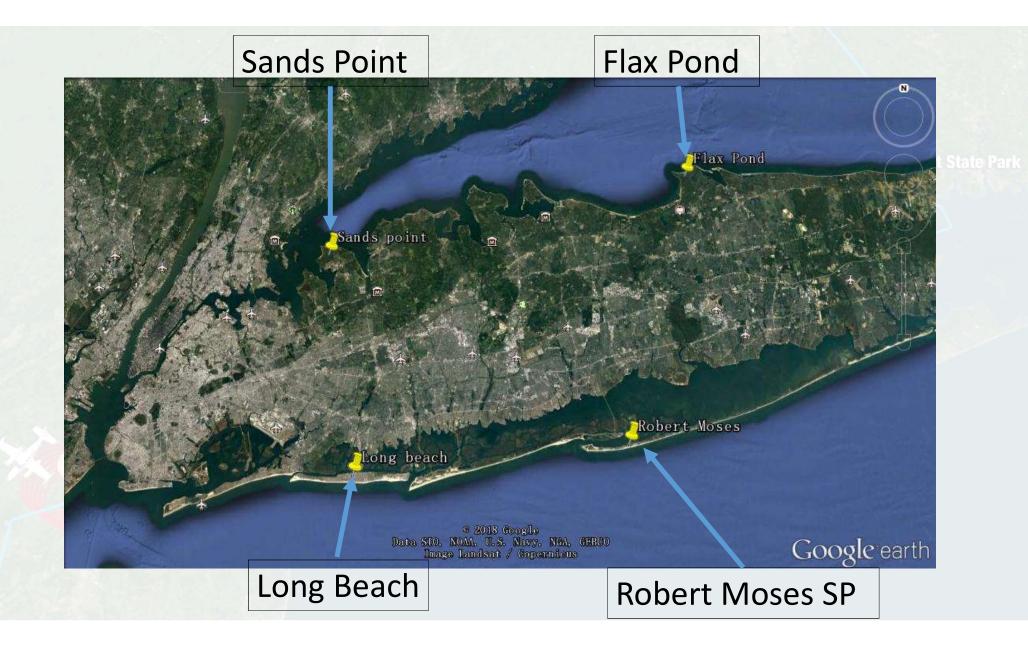
Acknowledgements

-----

- NESCAUM agreement 2411 and NYSERDA contract number 48971
- Special thanks go to Stony Brook University and Stephen Abrams for support at the Flax Pond Marine Laboratory.

Rutgers

LISTOS Meeting 4/11/19


## Methods

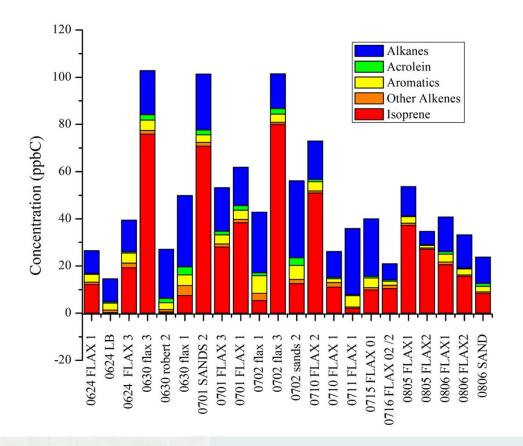
- <u>Sample Collection</u>: Entech CS1200E passive sampler. Roughly one hour (~50 min) integrated whole air samples in 6 L canisters.
- <u>Analysis: DEC Rensselaer Lab GC-MS Method TO-15</u>
  - Forty plus "toxics" species quantified with a TO-15 standard.
  - Forty plus additional "PAMS" non-polar hydrocarbons quantified using a PAMS standard.

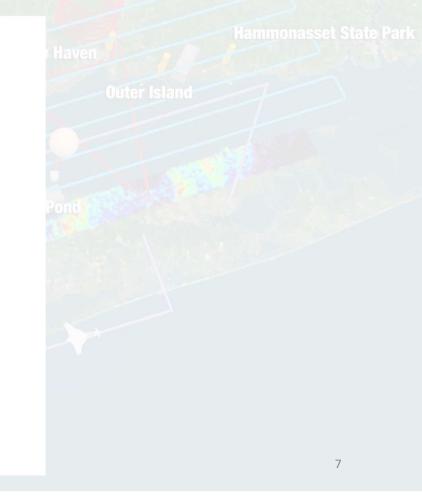
 Note: This sampling and analysis method does not measure anything above C<sub>12</sub> nor most oxygenated hydrocarbons.

## Sample Collection

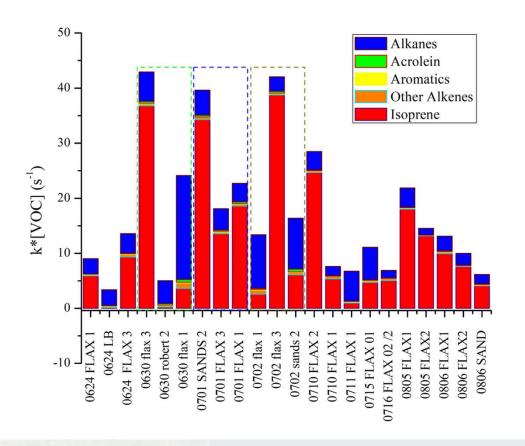
- 22 total canister samples, 17 at Flax Pond and 5 collected while parked at near-road locations
- Often collected in groups of three: Flax Pond, near road, Flax Pond
  - Three samples including a near road sample collected on the following dates
    - 6/24/2018 Long Beach (south shore)
    - 6/30/2018 Robert Moses State Park (south shore)
    - 7/1/2018 Sands Point (north shore)
    - 7/2/2018 Sands Point (north shore)
    - 8/6/2018 Sands Point (north shore)
  - Additional (Flax Pond only) samples collected
    - 7/10/2018 2 samples
    - 7/15/2018
    - 7/16/2018 2 samples
    - 8/5/2018 2 samples




## Results – VOC Reactivity (VOCR)


- Express results in terms of the OH reactivity of the VOC mixture. This is a measure of the ozone producing capacity (or ozone production rate potential) of the VOCs in the sample.
- We considered a group of 30 of the most abundant and/or reactive PAMS compounds – 18 alkanes, 5 alkenes including isoprene, 6 aromatics, and acrolein.

 VOCR (VOC Reactivity) = ∑ k<sub>VOCi</sub>\*[VOC<sub>i</sub>], where i denoted one of the 30 VOCs


 VOCR of roughly 20 s<sup>-1</sup> represents a moderately reactive system (value representative of SOAS)

## Concentration Results for all samples

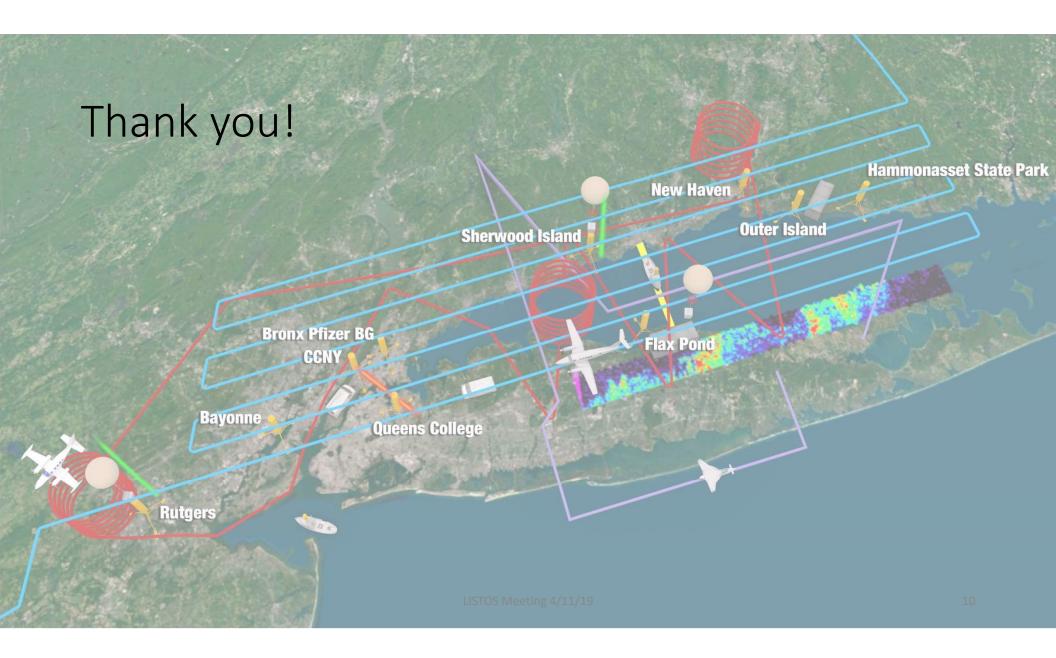




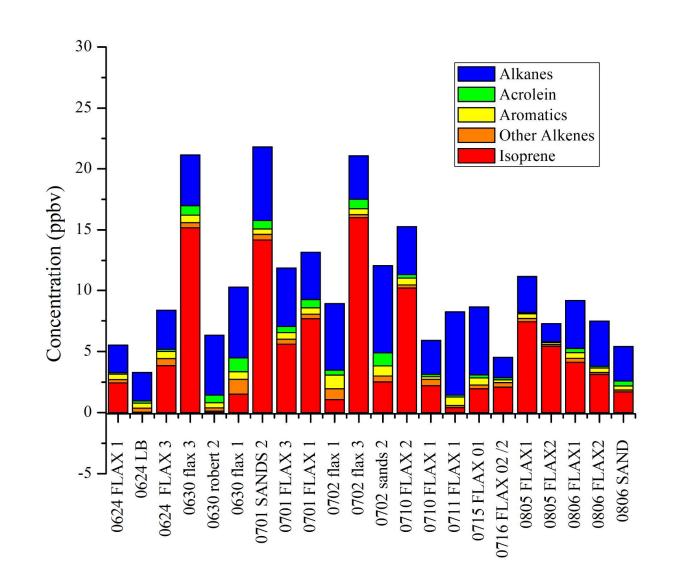
## VOCR Results for all samples



#### Hammonasset State Park


- Isoprene dominates overall, but is highly variable
- Highest measured reactivity observed during 6/30 – 7/2 major ozone episode
- Alkanes important contributors, and sometimes dominate a given sample (Mostly pentanes and hexanes)

# Questions


- How much reactivity are we missing measuring only PAMS compounds?
- What do others see for VOCR?
- nerwood Island

**Juter Island** 

- DEC at Bronx;
- Mak group at Flax Pond (PTR-MS);
- NOAA group in mobile lab (PTR-MS):
- Russ and Xinrong aircraft canister samples;
- Gentner Group?
- How do these compare with GCAS HCHO columns?
- How do these compare with model predictions?



| PAMS ANALYTES       | Cyclohexane            |  | TOXICS ANALYTES                          | CHBrCl2                   |
|---------------------|------------------------|--|------------------------------------------|---------------------------|
| Propene             | 2-methylhexane         |  | Dichlorodifluoromethane                  | TCE                       |
| Propane             | 2,3-dimethylpentane    |  | Chloromethane                            | cis-1,3-DCPE              |
| Isobutane           | 3-methylhexane         |  | Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro | trans-1,3-DCPE            |
| 1-butene+isobutene  | 2,2,4-trimethylpentane |  | Vinyl Chloride                           | 1,1,2-TCEA                |
| n-butane            | n-heptane              |  | 1,3-butadiene                            | Toluene                   |
| -2Butene            | methylcyclohexane      |  | Bromomethane                             | 1,2-Dibromoethane         |
| Cis2-butene         | 2,3,4-trimethylpentane |  | Chloroethane                             | PERC                      |
| so-Pentane          | 2-methylheptane        |  | Acrolein                                 | Chlorobenzene             |
| lPentene            | 3-methylheptane        |  | Trichlorofluoromethane                   | Ethylbenzene              |
| n-pentane           | n-octane               |  | 1,1-dichloroethene                       | M+P Xylene                |
| soprene             | nonane                 |  | Dichloromethane                          | Styrene                   |
| rans-2-pentene      | isopropylbenzene       |  | 1,1,2-1,2,2-Trichlorotrifluoroethane     | 1,1,2,2-Tetrachloroethane |
| is-2pentene         | n-propylbenzene        |  | t-1,2-DCEE                               | o-Xylene                  |
| 2,2-dimethylbutane  | m-ethyltoluene         |  | 1,1-DCEA                                 | 1,3,5-trimethylbenzene    |
| cyclopentane        | p-ethyltoluene         |  | МТВЕ                                     | 1,2,4-trimethylbenzene    |
| 2,3-dimethylbutane  | o-ethyltoluene         |  | Chloroform                               | Benzyl Chloride           |
| 2-methylpentane     | decane                 |  | 1,2-DCEA                                 | m-DCB                     |
| B-methylpentane     | 1,2,3-trimethylbenzene |  | 111 TCEA                                 | p-DCB                     |
| ו-hexane            | 1,3-diethylbenzene     |  | Benzene                                  | o-DCB                     |
| nethylcyclopentane  | 1,4-diethylbenzene     |  | Carbon Tetrachloride                     | 1,2,4-TCB                 |
| 2,4-dimethylpentane | undecane               |  | 1,2-DCPA                                 | HCBD                      |



#### onasset State Park