TSI 3783 Ambient Water CPC for Routine Particle # / UFP measurements:

Are we there yet?

George Allen

Presented at the NACAA-EPA MSC, July 13, 2010

The Problem:

Routine ambient "UFP" monitoring is needed soon UFP == total particle # concentration (#/cc) [no sizing info, down to < 10 nm diameter] For Near-Road, other combustion-oriented sites

Existing methods ("CPC") are not robust, not simple Example: TSI 3022a butanol CPC Can provide good data; research tool

Recent Progress: TSI (Hering/Quant) Water CPCs No Butanol! First round didn't work very well (Ex: 3781)

The Solution?

TSI model 3783 water CPC Released Spring 2010; ~ \$24k.

Designed from the start for routine long-term ambient use Input from several beta testers (thanks Phil F, Jim S!) Got many ugly bugs fixed

Meets most requirements for ambient # conc. monitoring: Down to < 10 nm

- Up to 10^6 /cc (no photometric mode)
- Fast response
- Short sample residence time (3 lpm inlet flow)

(minimize diffusion losses)

Front Panel

Inlet Screen Assembly

The inlet screen assembly prevents large matter (i.e. insects and dirt) from entering the instrument

Back Panel

Wick Removal 1,2,3

2. Unscrew Wick Cartridge

Unscrew Jack Screw
remove wick assembly

3. Unscrew wick cartridge to remove the wick

EPC Specifications

Min. Detectable Particle (D50) Particle Concentration Range

Particle Concentration Accuracy

Flow

High-flow Inlet Low-flow Inlet Aerosol Flow Rate

Ambient Temperature Range

Water System

Water Consumption Vacuum Calibration Power Requirements Physical Features Dimensions (HWD) Weight 3 ±0.3 Liters/minute 0.6±0.06 Liters/minute 120 +12 cm3/minute

0 to 10⁶ particles/cm³

Single Particle Counting

±10% at 10⁶ particles/cm³

10 to 40 °C (50 to 104 °F)

External 500ml bottle for up to 1-week operation. 4L fill bottle for up to 4-week operation (optional accessory)

250 ml/week

External vacuum; pump not included

Recommended annually

100 to 240 VAC, 50/60 Hz, 175 W maximum

7 nm, verified with DMA-classified sucrose

8"x19"x12" 9.9kg (22lbs)

- 1. Use the Quick Start Guide and Read the Manual
- 2. Standard Operation Procedures (every 2 weeks)
 - Fill water bottle with distilled or ultrapure water do not use tap water
 - Check status screen, inlet pressure, time and date on the USB flash drive
 - Check/clean the inlet screen

3. Outdoor Operation Procedures

- Conditioned enclosure (hold T & P specs)
- Heat or insulate the sample line (to reduce sample condensation)
- Use a PM inlet or a cyclone (with a cut size no greater than $\sim 3 \mu m$)
- Inlet pressure differential not greater than 2.5 kPa (10" of H_2O)

4. Annual Maintenance

- Replace the filters
- Replace the wick
- Check flows
- Perform a zero check

3783 and 3022a CPCs, 1-h means - Countway HSPH site

3783 and 3022a CPCs, 1-h means - Countway HSPH site

Boston Quebec Fire Event -- Hourly PM2.5, Aeth DC, and # conc PM2.5 is average of N.End and Roxbury MA-DEP sites

<u>SETUP</u>

- 1. Turn 3783 power on; needs ~15 minutes warmup.
- 2. Connect drain bottle and place 2 ft. below instrument.
- 3. Connect vacuum pump to exhaust port [not to the inlet port easy to do...]
- 4. Connect inlet line to inlet port [make sure the unused inlet is capped]
- 5. Connect 1/2 liter water supply bottle filled with MQ or DI water and place above instrument.
- 6. Plug in "clean" usb thumb drive. Push "Start" on touch-display to log data.

Setup parameters:

Time = 60 sec (one data record per minute) Flow = 3 lpm Logging = daily (one data file per day) Clock: set to EST using touch screen controls

OPERATION

Daily or each site visit:

Check water level in supply bottle; refill if less than 1/3 full (full bottle lasts ~ 2 weeks) (Empty drain bottle if more than 1/2 full)

Check that CPC display shows:

"Logging" in lower right "READY" in upper left -- a reasonable 2-hour data plot

Weekly or as needed:

Change the USB memory stick and check/reset CPC time: Press Stop on touch-display Swap USB sticks Check instrument date/time [Setup menu] and reset if >30 seconds from site time Press Start

AFTER A POWER FAILURE:

Push the "Start" button on the display. (The CPC will not start to log data to the usb mem stick after a power failure.)

To Drain [before moving or shipping]:

- 1. Disconnect water supply bottle.
- 2. Run instrument for ~ one hour, until display says "low water" and counts drop towards zero

Does It Work?

Yes. No significant problems during short-term tests.

How reliable? Don't know yet. Need longer term field testing

Things to Consider:

Keep inlet line very short: < 12-16 inches! Issues with true collo of other instrument inlets... Run at 3 lpm inlet flow (minimize residence time) Use inlet cyclone (BGI SCC0.732, 0.6 µm at 3 lpm) <u>http://bgiusa.com/aam/sccphoto.htm</u> Keeps boulders out of the instrument