PM-2.5 FEM Performance in NYC

MetOne BAM 1020, Thermo 5014 BAM, TEOM FDMS Ver C, TEOM 1405DF

Dirk Felton NESCAUM MAC Meeting October 27-28, 2010 Chelmsford, MA

FEM Shootout – Installed Dec-Jan 2010

1405i (No Neph)

8500 VerC 1405 DF BAM 1020

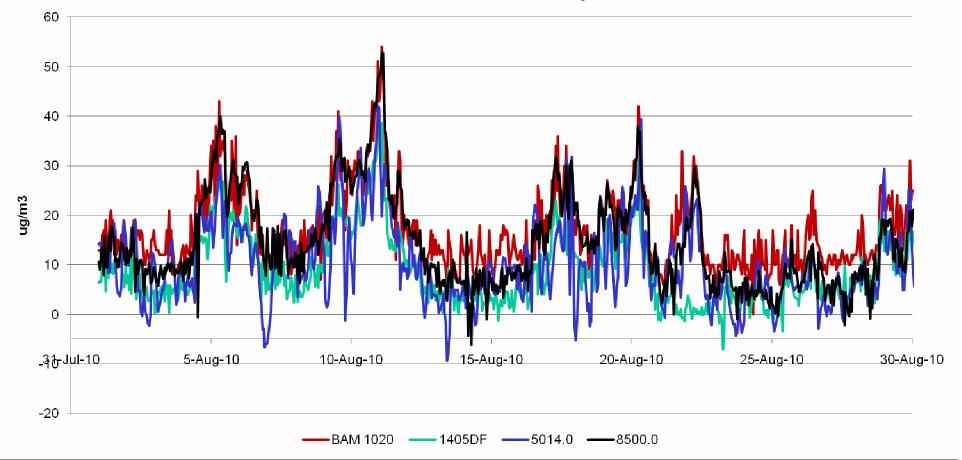
FEM Shootout

- The comparison continued through August 2010
- The site also has a daily PM-2.5 and PM-10 FRM

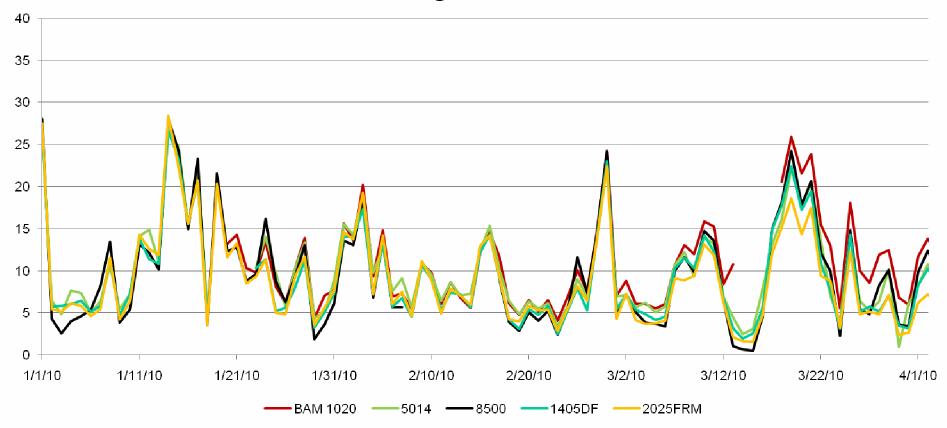
FEM Shootout: Inlets5014iBAM 10201405 DF8500 VerC

FEM Shootout: BAM Zero Test

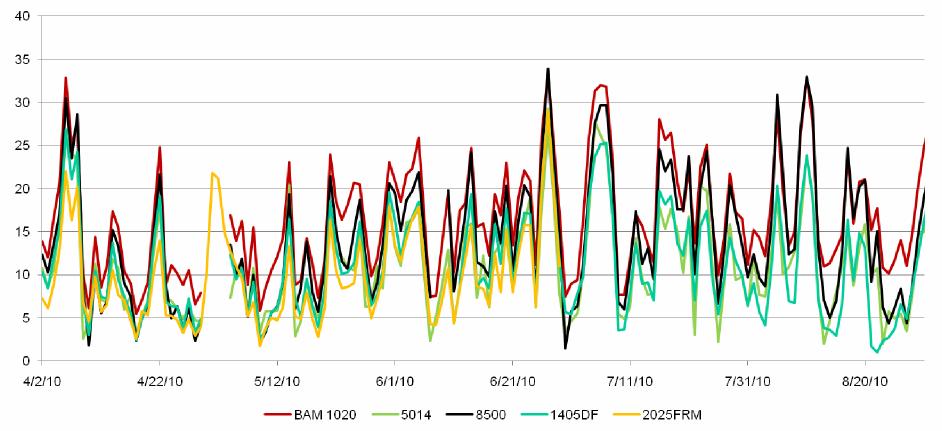
- BAM 1020 arrived with Background Coef. -5.4 ug/m3
- BAM Zeroed on-site new Background Cf -3.1 ug/m3
- BAM Zero check 2 Months later without reset to zero.
 1.9 ug/m3
- BAM Zeroes may be related to background radiation at site (Radon), instrument conditions, seasonal affects: temperature and humidity.


February: FEMs Hr-Average Time Series

PM-2.5 Class III FEM Comparison

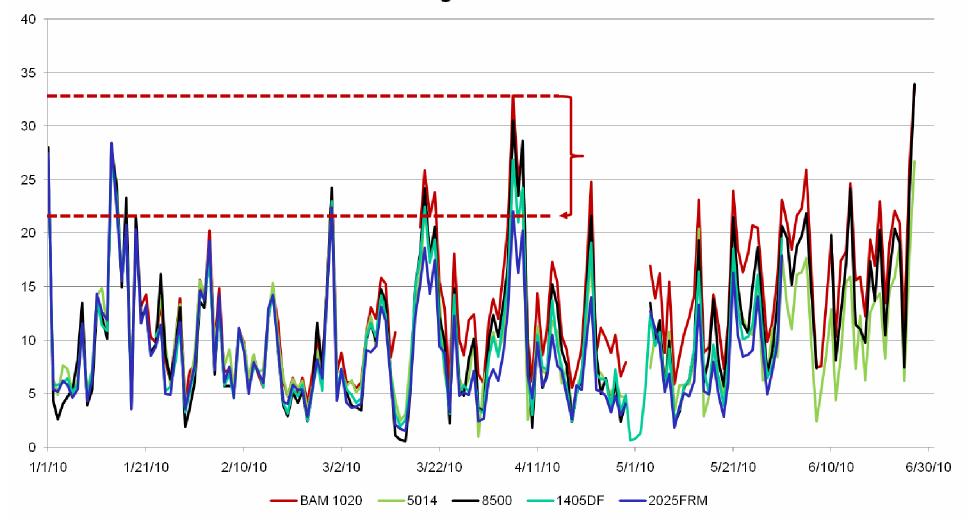

August: FEMs Hr-Average Time Series

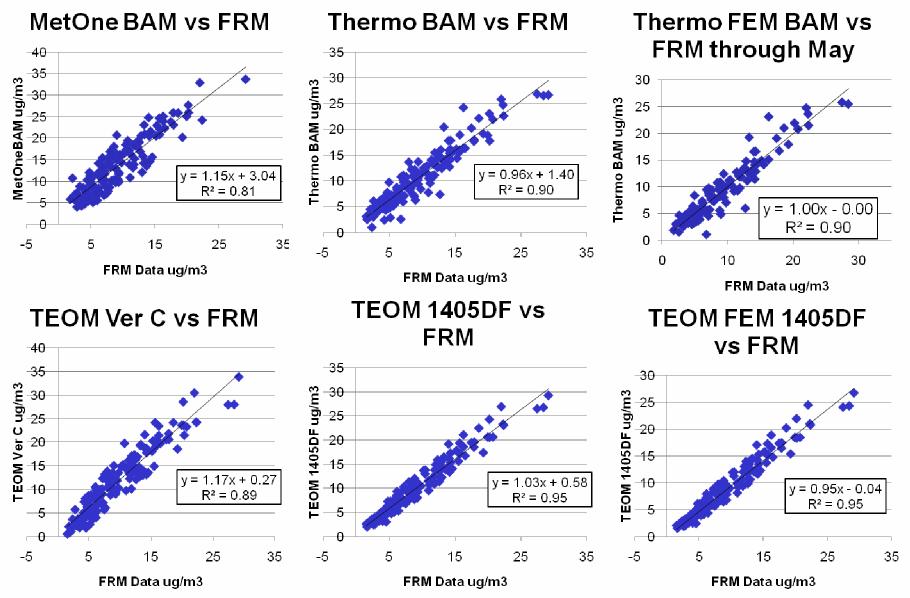
PM-2.5 Class III FEM Comparison


Queens, NY FEMs and FRM Time Series

24-Hr Average PM-2.5 FEM Data

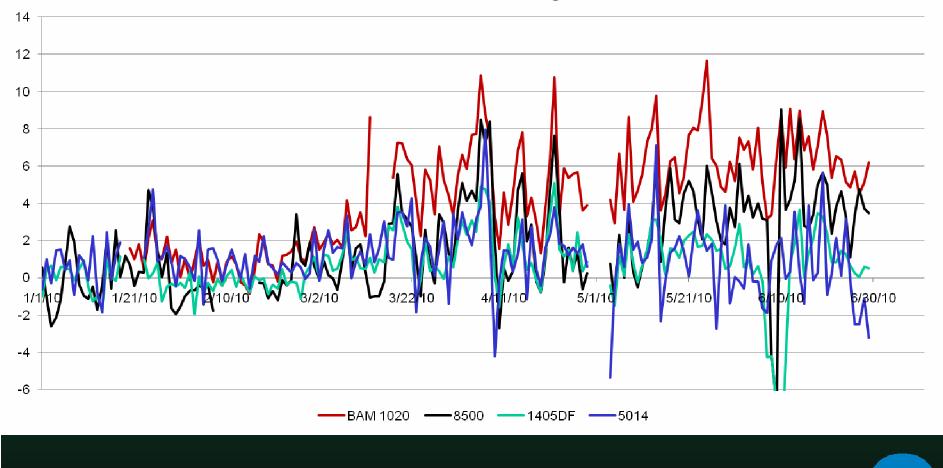
Queens, NY FEMs and FRM Time Series


24-Hr Average PM-2.5 FEM Data


3rd Qtr FRM Data not yet available

Is 10 ug/m3 too much of a Difference in comparison to the Daily NAAQS?

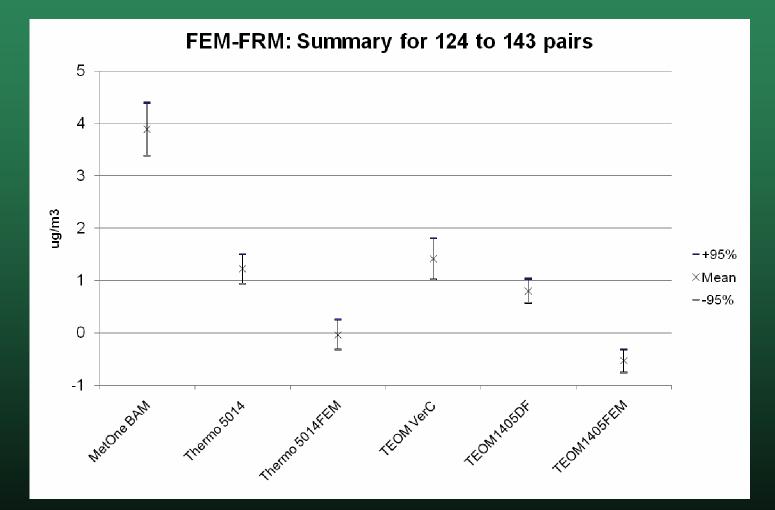
24-Hr Average PM-2.5 FEM Data



FEMs vs the FRM: January through June

Is the Bias Seasonal? All of the FEMs are higher as it gets warmer

FEM-FRM 24-Hr Average PM-2.5



Data Assessment Techniques

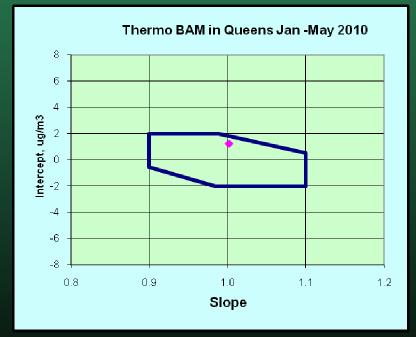
- Initial Evaluation of FEM in S&L Network FEM Test Statistics from CFR: Correlation ≥ 0.95 and slope and intercept within irregular parallelogram
- Evaluation as Component of Network Data Quality Objectives: Bias ± 10% and CV ± 10%
- Comparison on individual episode days



FEM Comparison to FRM: The Difference (FEM-FRM) should have 0.0 within Confidence Interval

FEM Test Results for MetOne BAM

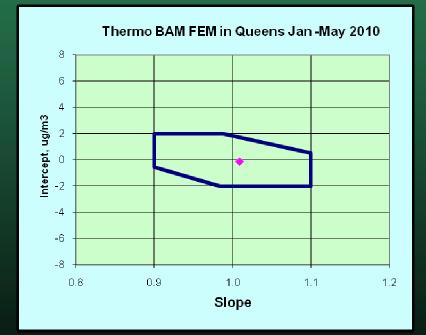
Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.147	2.598	0.87164
Limits for	Upper:	1.100	-0.092	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		FAIL	FAIL	FAIL


The data will be invalidated if it is found that the instrument needs to be repaired

116 Valid Pairs D(%) = 18.53(16.21-20.85) CV(%) = 20.97D & CV \neq meet DQOs

FEM Test Results for Thermo 5014 BAM Mass Concentration Channel

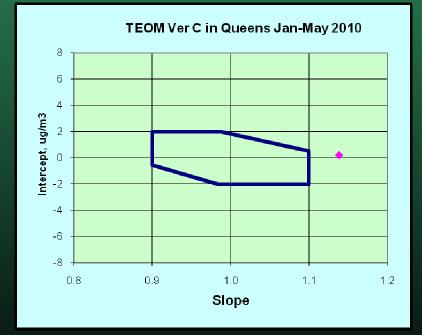
Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.002	1.234	0.94951
Limits for	Upper:	1.100	1.825	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		PASS	PASS	FAIL



133 Valid Pairs Bias:D(%) = 9.99 (8.15 to 11.82) CV(%) = 18.31 $CV \neq meet DQO$

FEM Test Results for Thermo 5014 BAM with FEM Algorithm

Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.009	-0.135	0.94894
Limits for	Upper:	1.100	1.734	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		PASS	PASS	FAIL



133 Valid Pairs Bias:D(%) = -9.13 (-7.61 to -10.66) CV(%) = 26.59 $CV \neq meet DQO$

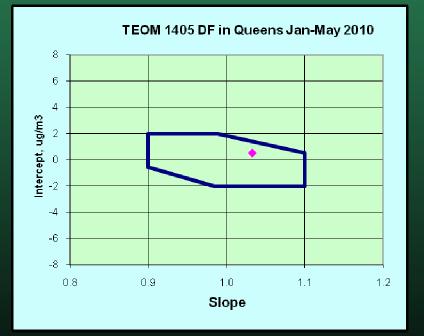
FEM Test Results for TEOM Ver C Mass Concentration Channel

Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.138	0.213	0.93469
Limits for	Upper:	1.100	0.023	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		FAIL	FAIL	FAIL

128 Valid Pairs Bias D(%) = -6.88 (-10.44 to -3.33) CV(%) = 22.43 $CV \neq meet DQOs$

FEM Test Results for TEOM Ver C FEM Algorithm Channel

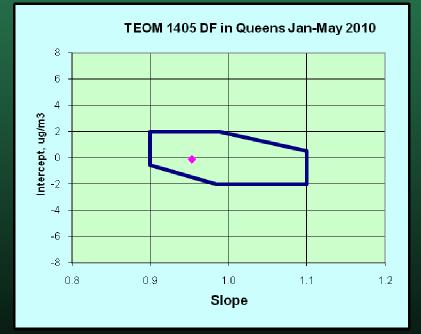
Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.005	-0.719	0.93699
Limits for	Upper:	1.100	1.790	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		PASS	PASS	FAIL



128 Valid Pairs Bias D(%) = -29.44 (-32.46 to -26.43) CV(%) = 25.32D&CV \neq meet DQOs

FEM Test Results for TEOM 1405DF Mass Concentration Channel

Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		1.033	0.508	0.96712
Limits for	Upper:	1.100	1.416	
PM2.5 Class III	Lower:	0.900	-2.000	0.95000
Test Results (Pass/Fail):		PASS	PASS	PASS



133 Valid Pairs Bias D(%) = 3.47(2.26 - 4.68) CV(%) = 11.07DQOs: Almost

FEM Test Results for TEOM 1405DF with FEM Algorithm

Regression statistics		Slope ¹	Intercept ²	Correlation (r)
Statistics for this test				
site:		0.953	-0.125	0.96755
Limits for	Upper:	1.100	2.000	
PM2.5 Class III	Lower:	0.900	-1.462	0.95000
Test Results (Pass/Fail):		PASS	PASS	PASS

133 Valid Pairs Bias: D(%) = -12.8(-12.03 to -13.61) CV(%) = 11.7DQOs: Almost Met

Conclusions

 The designation of FEMs that do not perform adequately have put State and Local Monitoring Agencies in a very difficult position.

- Agencies can switch to FEMs to reduce labor costs and risk non-attainment

- Agencies can retain costly daily FRMs in order to avoid unnecessary nonattainment and maintain economic viability

Resolution

- The "Science Oriented" EPA Administration should review the PM-2.5 FRM and revise it to include more of the volatile components of PM.
- This will permit the FEMs to more easily emulate and eventually replace the filter based PM-2.5 FRM.
- This can easily be done by changing the FRM filter environmental conditions at the conclusion of the sampling period.

