Disclaimer: This presentation is preliminary and does not include all the data and analyses planned for the project.

New Jersey Turnpike Air Monitoring

May 2, 2008 MERI

New Jersey Turnpike Traffic Emissions

 Traffic emission is a major anthropogenic source of air toxics in the ambient air.

Objectives

- To measure ambient concentration gradients of PM_{2.5} ,TSP, and PAHs from NJ turnpike vehicle emissions.
- To determine how particulate concentration from vehicle emission is affected by seasons, day and night, traffic flow variations and meteorological conditions.

Study Design

- Periods: September 2007 ~ September,
 2008
- Sampling site: 2 miles north of Turnpike exit 16 W (Williams sites)
- Sampling duration: 24 hours
- Sampling distances: 50, 100 and 150 m
- Measurements: PM_{2.5}, TSP, and PAHs

New Jersey Meadowlands Commission

Environmental Research Institute

Secured Sampling Site

Williams site in Carlstadt

Installation of platform and samplers

Sampling Sites: A, B, and C

A: 50 m

PM_{2.5}, TSP & PAH Samples

PM_{2.5} Sampler:

Model: Partisol-FRM 2000

Flow rate: 16.7 L/min

Duration: 24 hours

Media: PTFE filter (47 mm ID)

Compounds: PM_{2.5} and Metals

Hi-vol. Sampler:

Model: PNY1123

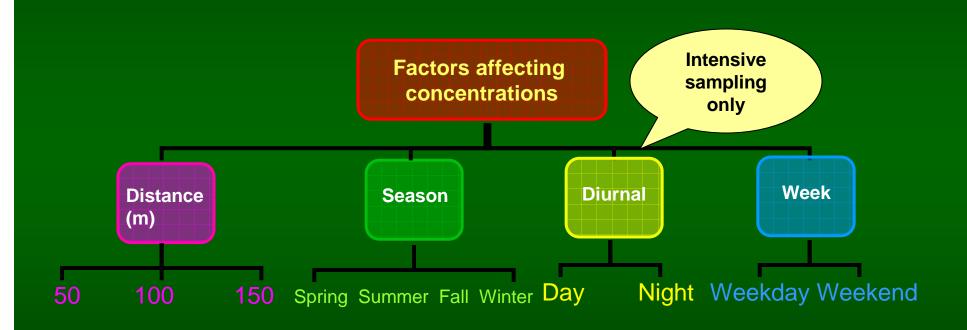
Flow rate: 0.5~0.7 m³/min

Duration: 24 hours

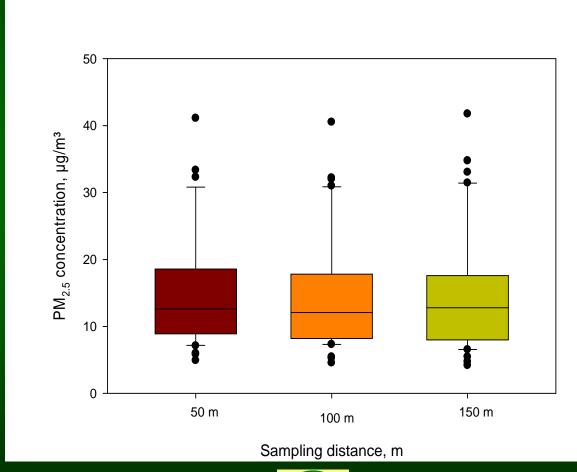
 Media: Quartz fiber filter (20.3 cm × 25.4 cm) and 2 PUF (3" height) plugs

Compounds: TSP, PAH-particle,
 PAH-gas

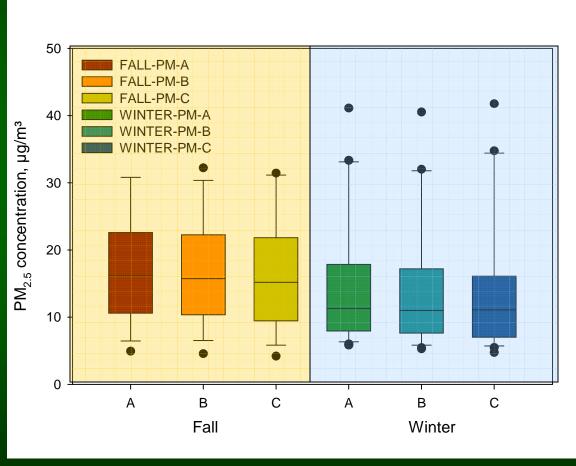
Environmental Research Institute


New Jersey Meadowlands Commission

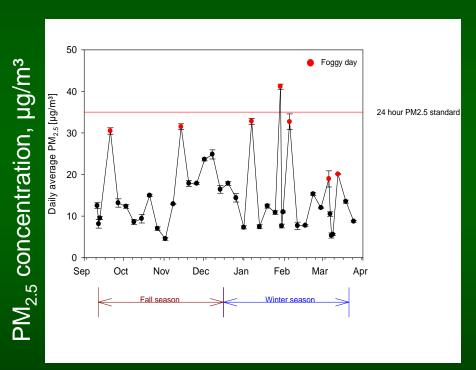
Sample Structure

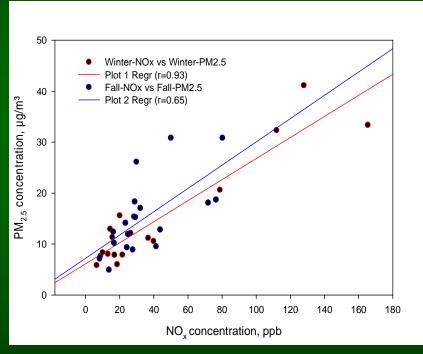

Compounds	Sampling events (Completed/Scheduled)		# of samples (Completed/Scheduled)		# of invalid
	Long-term	Intensive	Long-term	Intensive	samples
TSP	37/63	12/24	111 /189	36/72	2
PAH _p	37/63	12/24	111/189	36/72	2
PAH _g	37/63	12/24	111 /189	36/72	2
PM _{2.5}	38 /63	12/24	114 /189	32/72	15
Total			447/ 756	140/288	21

Analysis Factors

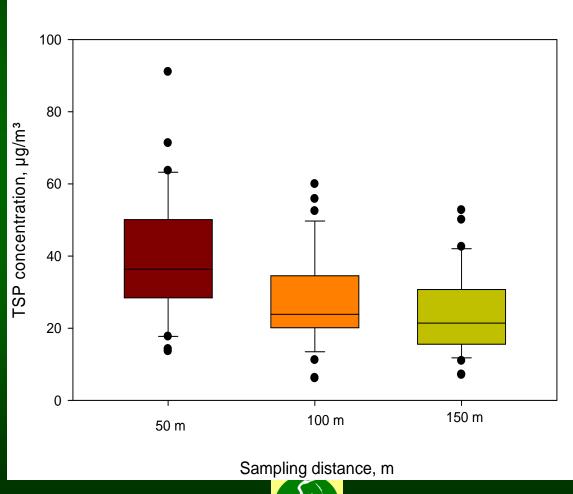


PM_{2.5} Conc. Profile by Distance

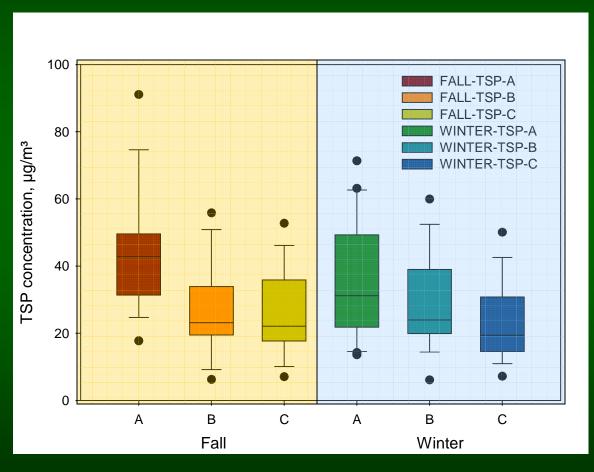



Seasonal Effect on PM_{2.5} Concentration

Association between PM_{2.5} and NO_x & Fog Day

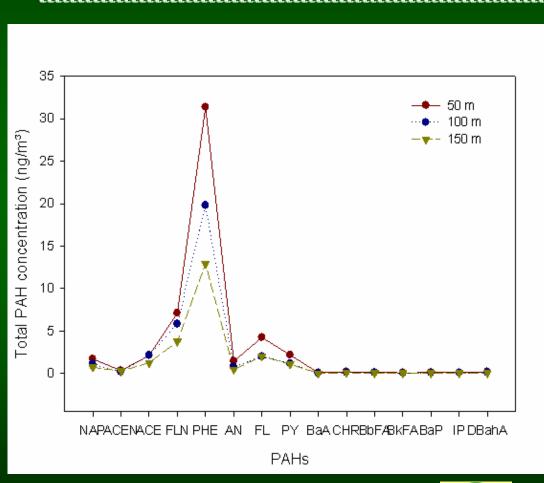

Fog Day
Cloud based on grounds; 100% humidity

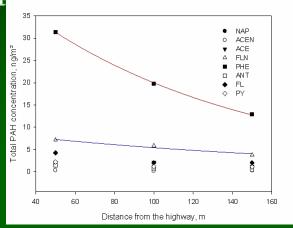
NO_x concentration

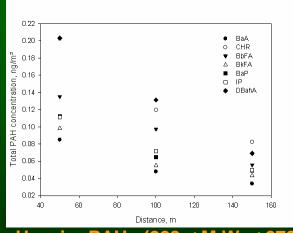

New Jersey Meadowlands Commission

Environmental Research Institute

TSP Conc. Profile by Distance




Seasonal Effect on TSP Concentration



PAH Conc. Profile by Distance

Lighter PAHs (128 ≤ M.W. ≤ 202)

Heavier PAHs (228 ≤ M.W. ≤ 278)

Conclusions-I

- There was no difference in PM_{2.5}
 concentration by distance (p> 0.05).
- The concentrations of TSP at 50 m were higher than at 100 and 150 m (p> 0.05).
- The concentrations of Total PAHs at 50 m were higher than at 100 and 150 m (p> 0.05).

Conclusion-II

- There was a noticeable seasonal variation of PM_{2.5} concentration with lower levels in the winter.
- There was no seasonal variation in TSP concentration.
- Higher PM_{2.5} concentration occurred as a result of high NO_x and fog.

Future Work

- Complete the Spring and Summer (2008) Data collection.
- Analyze metal concentration associated with PM_{2.5} (Fall, Winter, Spring and Summer).
- Complete Summer intensive sampling (2008).
- Build statistical models that predict PM_{2.5}, TSP and PAH concentration based on weather, NO_x, distance, season, day of week and traffic volume.

Participants

- Dr. Francisco Artigas
- Dr. Jin Young Shin
- Dr. Irene Jung
- Christine Hobble
- Joe Gryzb
- Dr. Yuan Gao
- Ed Konsevick

Acknowledgements

- This research was funded by EPA (Grant XA97268501-1).
- We would like to acknowledge Williams
 Gas Pipeline Transco. for allowing the use
 of their site and for providing security for
 our instruments.