Reducing Vehicle Emissions to Meet Environmental Goals

Tom Cackette California Air Resources Board

2009 MIT-NESCAUM Endicott House Symposium August 12, 2009

Less Summertime Smog

of Smoggy Days 1989 2008 Change South 34% 205 134 Coast

Less Particle Pollution

Decrease in Particle Pollution¹ 2000-2007

San Bernardino Roseville

32%

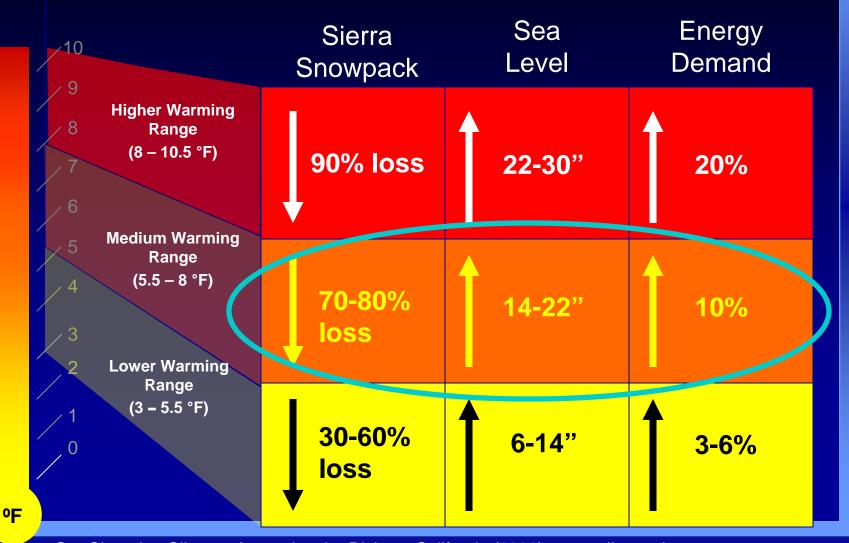
32%

Visalia

15%

¹ PM2.5

What More is Needed to End Urban Pollution?

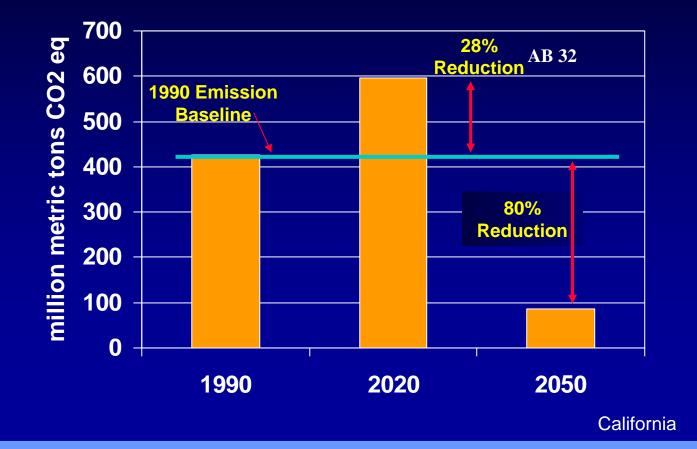

- Future passenger vehicles as clean as the best today (SULEV)
- New Diesel trucks/equipment 95+% cleaned up
- Accelerated turnover
 - \$50+ million/yr scrapping passenger vehicles
 - Retrofit 90+% of legacy diesel vehicles
- Clean up many remaining smaller sources
- Clean ambient air standards will be met
 - PM2.5 by 2015
 - Ozone by 2023

New Challenge -Climate Change

Goal: stabilize global temperature

Climate Change: Impacts on CA

(2070-2099 as compared with 1961-1990)



Our Changing Climate: Assessing the Risks to California (2006), www.climatechange.ca.gov

New Challenge -Climate Change

Goal: stabilize global temperature
80% reduction in CO₂e emissions by 2050

Magnitude of the Challenge All Sources

Climate Change -Formula for Success

Basic formula for success:
1. Increase vehicle efficiency by ~3X

Efficient Technologies -Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies

* From baseline

Efficient Technologies -Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies
2017-2025	Pavley 2	~50%	Hybrid drive trains Less weight

* From baseline

Climate Change -Formula for Success

- Basic formula for success:
 - 1. Increase vehicle efficiency by ~3X
 - 2. Transition from petroleum to ultra low carbon-fueled vehicles
 - Few vehicles in 2050 still use high carbon fuels

Efficient Technologies -Three Phases

Model Years	Regulatory Driver	GHG Reduced*	Technology
Now -2016	Pavley 1	30%	Conventional drive trains – off the shelf technologies
2017-2025	Pavley 2	40-50%	Hybrid drive trains Less weight
2015-2050	ZEV 2	80+%	Electric drive Ultra low carbon fuels
* From baseline Most vehicles need to be like these by 2050			

Transportation Vision: 2050 One Possible Scenario

Conventional		
% veh.	10%	
mpg	40 mpg	

GHG 2050

Reduce passenger vehicle GHG by 87%

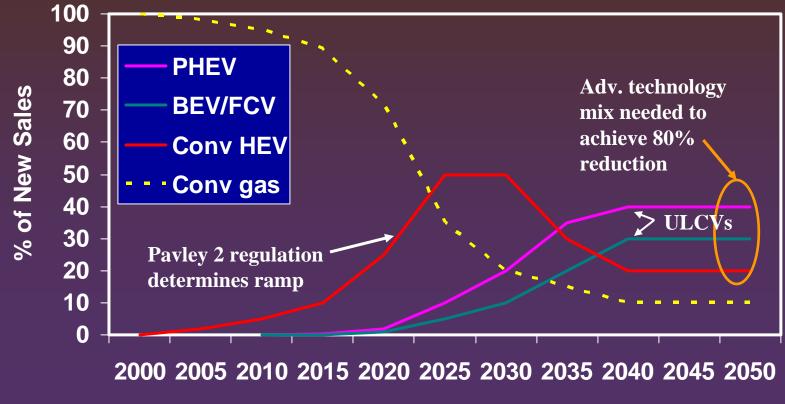
Biofuel/HEV

% veh. 18% mpg 60 mpg

% veh. 72% mpg 80+ mpg

Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial-	Market Share -	~Years
ization Phase	New Vehicle Sales	to occur
Early	A few 100s →	10
commercial	~ 1 %	(2020)


Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial-	Market Share -	~Years
ization Phase	New Vehicle Sales	to occur
Early	A few 100s →	10
commercial	~1 %	(2020)
Commercial	~1% → max. market	15
expansion	acceptance	(2035)

Timing: Introduction of Ultra-Low Carbon Vehicles

Commercial-	Market Share -	~Years
ization Phase	New Vehicle Sales	to occur
Early	A few 100s →	10
commercial	~1 %	(2020)
Commercial	~1% → max. market	15
expansion	acceptance	(2035)
Fleet turnover	Remain at max.	15
	market acceptance	(2050)

Example of Possible* Ultra Low Carbon Vehicle Introduction Rates

* Not a prediction, but designed to show an example of what is needed to achieve 80% reduction by 2050.

Climate Change -Formula for Success

- Basic formula for success:
 - 1. Increase vehicle efficiency by ~3X
 - 2. Transition from petroleum to ultra low carbon-fueled vehicles
 - Few vehicles in 2050 still use high carbon fuels
 - 3. Reduce VMT (~20%)
 - 4. Do the same for all other sources (including rest of transportation)

Summary

 Conventional technologies provide near-zero smog emissions

- Will solve urban pollution problem
- New technologies required to address climate change
 - High efficiency (3X current) electric drive necessary
 - Ultra-low carbon fuels e.g. e⁻ and H₂
 - Multiple transportation fuels likely
 - Commercialization must start in next decade