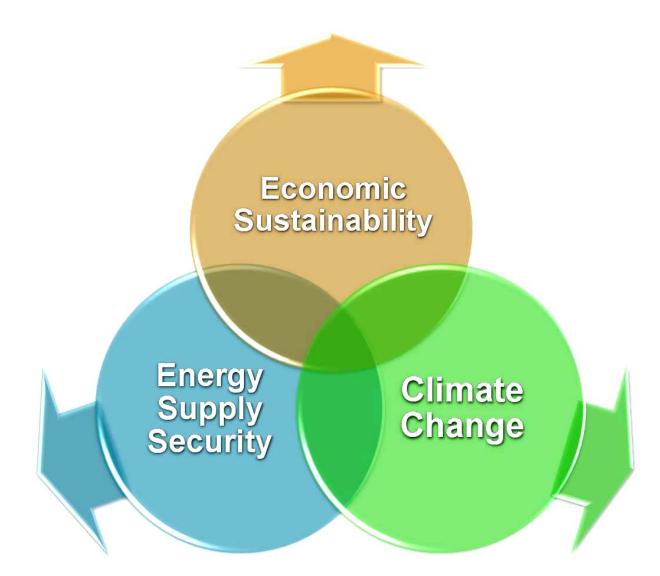


NATIONAL ENERGY TECHNOLOGY LABORATORY

DOE Perspective on Coal CCS

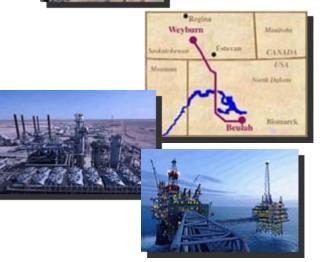

Joseph P. Strakey

Chief Technology Officer

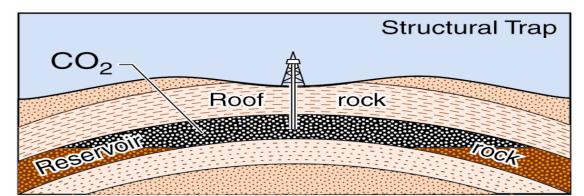
MIT-NESCAUM Symposium, Endicott House, August 11, 2009

Energy Strategy Complexity

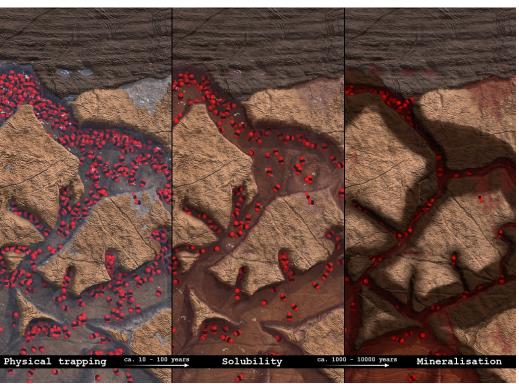
2


Observations from CO₂-Energy Modeling

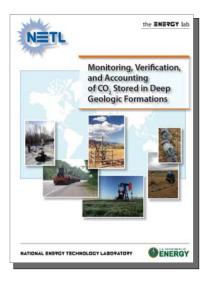
- Economy wide, the majority of carbon emission reductions over the next several decades are expected to occur in the electric power sector, primarily from reduced use of conventional coal plants.
- Model predictions of reductions in coal use are sensitive to the relative pricing of coal with CCS vs. nuclear, and assumptions for demand reductions through energy efficiency.
- Internal DOE analysis indicates that coal with CCS (and to a lesser extent gas with CCS) will contribute significantly to our electricity supply in 2030.
- Looking out on a path to long-term stabilization at 450ppm CO_2 (~ 519 to 558ppm CO_2 -e), modeling by DOE's shows that coal with CCS and gas with CCS continue to play a role in 2050 and beyond.
- The availability of CCS and nuclear technologies have a significant impact on allowance prices; these technologies must be developed, demonstrated, and deployed on a large scale before 2030.

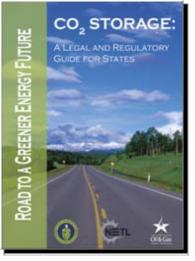

CCS Experience

- Carbon capture technology is commercially available
 - Post-combustion capture at 20-80 MWe
 - Pre-combustion (gasification) capture at full scale
- CO₂ injection into geologic formations is widely practiced today
 - EOR: 48 million TPY in 2007
 - 50 Acid gas injection projects
 - Megaton/yr injection projects
 - Weyburn-Midale
 - Sleipner
 - In Salah



Carbon Storage Mechanisms


- Physical trapping
- Residual phase trapping
- Solution Trapping
- Mineralization



Key Challenges for CCS

Technical Issues

- Capture Technology
 - Existing Plants
 - New Plants (PC)
 - IGCC
- Cost of CCS
- Sufficient Storage Capacity
- Permanence
- Best Practices
 - Storage Site Characterization
 - Monitoring/Verification
 - Modeling

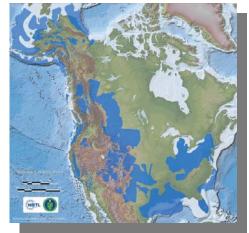
Legal/Social Issues

- Regulatory Framework
 - Permitting
 - Treatment of CO₂
- Legal Framework
 - Liability
 - Ownership
 - Pore space
 - CO₂
- Infrastructure
- Human Capital
- Public Acceptance

Regional Carbon Sequestration Partnerships

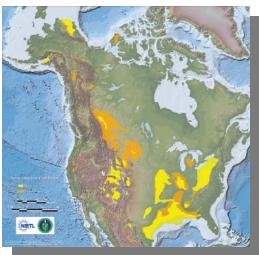
- Determine regional sequestration benefits
- Baseline region for sources and sinks
- Establish monitoring and verification protocols
- Address regulatory, environmental, and outreach issues
- Validate sequestration technology and infrastructure

- 43 States, 4 Canadian Provinces
- 350+ distinct organizations


Developing the Infrastructure for Wide-Scale Deployment

National Atlas Highlights (Atlas II) Adequate Storage Projected

Emissions ~ 3.8 GT CO_2 /yr point sources

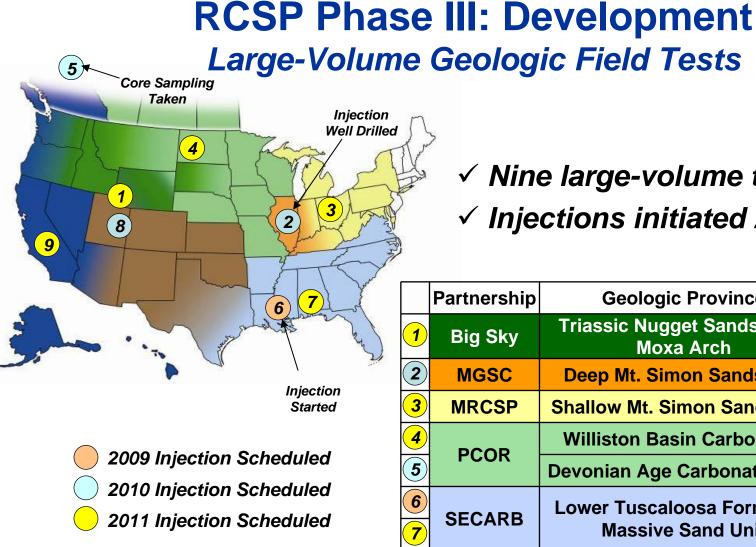


Oil and Gas Fields

Saline Formations

North American CO₂ Storage Potential (Gigatons)

Unmineable Coal Seams

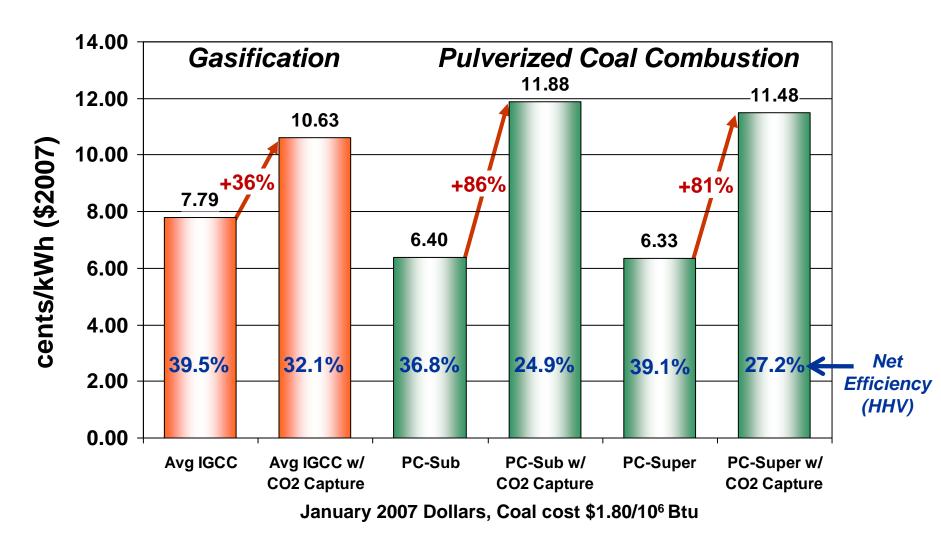

Conservative Resource Assessment

Sink Type	Low	High
Saline Formations	3,300	12,600
Unmineable Coal Seams	160	180
Oil and Gas Fields	140	140

Hundreds of Years of Storage Potential

NATIONAL ENERGY TECHNOLOGY LABORATORY

Download at http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/atlasII.pdf



Nine large-volume tests \checkmark

✓ Injections initiated 2009 – 2011

	Partnership	Geologic Province	Туре
1	Big Sky	Triassic Nugget Sandstone / Moxa Arch	Saline
2	MGSC	Deep Mt. Simon Sandstone	Saline
3	MRCSP	Shallow Mt. Simon Sandstone	Saline
4	PCOR	Williston Basin Carbonates	Oil Bearing
5	PCOR	Devonian Age Carbonate Rock	Saline
6 7	SECARB	Lower Tuscaloosa Formation Massive Sand Unit	Saline
8	SWP	Regional Jurassic & Older Formations	Saline
9	WESTCARB	Central Valley	Saline

Cost of Electricity Comparison -- New Plants (NETL Baseline Study)

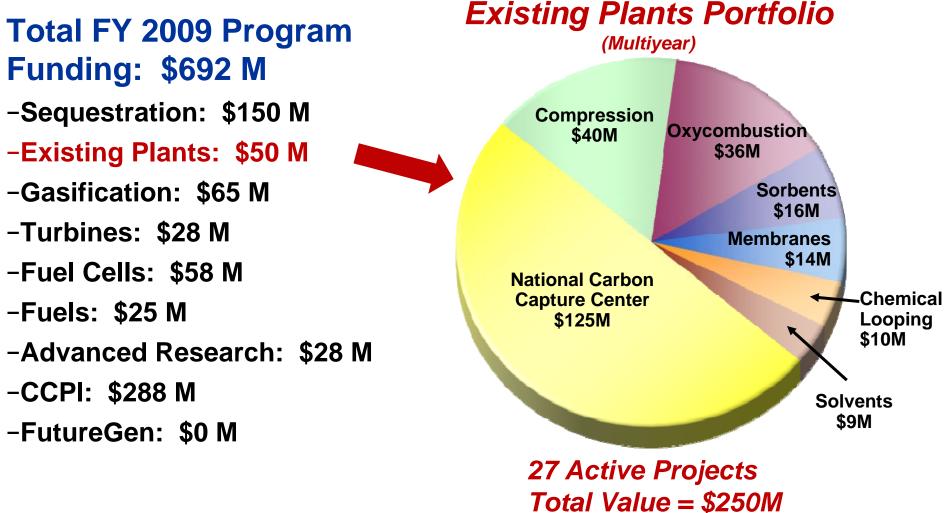
NATIONAL ENERGY TECHNOLOGY LABORATORY

10

DOE Coal RD&D Program

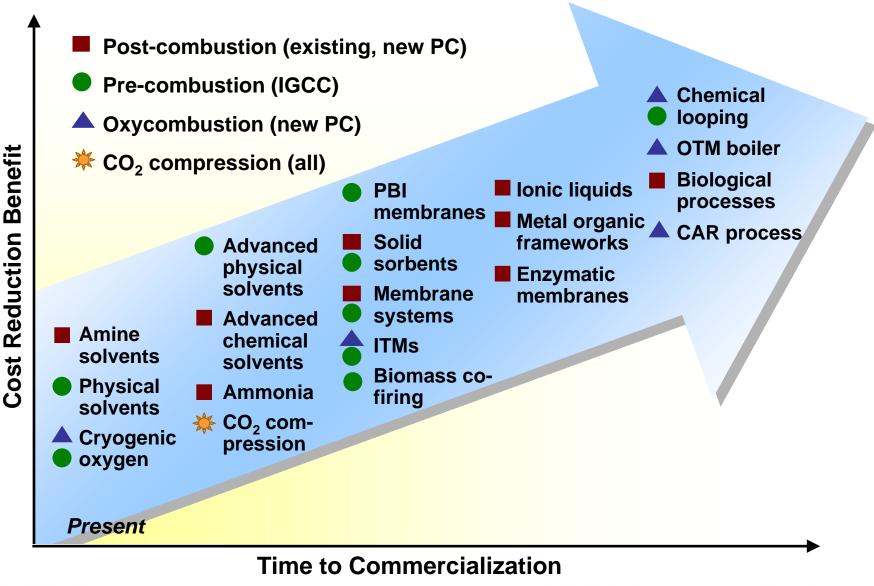
• Overall Coal Program goal (deployment in 2020):

>90% CO₂ capture


<10% increase in cost of electricity (COE) with CCS

• Sequestration Program goal (2012):

- ✓ 90% CO_2 capture
- ✓ 99% storage permanence
- < 10% increase in COE
 (new plants -- pre-combustion capture)
- < 35% increase in COE (existing plants -- post- and oxy-combustion)
- ✓ ±30% storage capacity estimates



Coal – CCS RD&D Budget

DOE Share = \$170*M*

Advancing Carbon Capture Technologies

Clean Coal Power Initiative Round 3 (CCPI-3)

Objective

 Demonstrate coal-based technologies that capture & sequester, or put to beneficial reuse, CO₂ emissions at commercial scale

Requirements

- Pre-combustion, post-combustion, oxy-combustion
- Geologic storage in saline aquifer, EOR, coal seams, basalt, stacked storage
- \geq 300,000 tons CO₂ per year
- 1st closing date Jan 20, 2009
 - Capture > 90%; Coal use > 75%
- 2nd closing date Aug 24, 2009
 - Capture > 50%, target 90%; Coal use > 55%
- Targeting COE increases of
 - < 10% for gasification; < 35% for combustion & oxy-combustion

Status

- \$1.436 billion available, including \$800 million in ARRA funds
- 1st group of applications received Jan 20, 2009
 - Two selections made in June 2009
- 2nd group of applications due Aug 24, 2009

CCPI-3: Hydrogen Energy International *IGCC with Hydrogen Turbine and Full Integrated CCS*

- 257 MWe (net) IGCC in Kern County, CA
- 90% CO₂ capture
- 2 million TPY sequestered in EOR
- \$2.6 billion (DOE \$308 million)
- Construction starts, March 2011
- Demonstration starts 2015

CCPI-3: Basin Electric Power Cooperative *Post-Combustion CO*₂ *Capture and Sequestration*

- Antelope Valley Station (AVS) near Beulah, ND
- 120 MW-equivalent slipstream from AVS Unit 1
- 90% CO₂ capture
- 1 million TPY sequestered in EOR
- \$300 million (DOE \$100 million)
- Construction starts February 2010
- Demonstration starts January 2013

Fossil Energy Recovery Act Provisions

Fossil Energy (\$ in Millions)	Funding Amount
Fossil Energy Research and Development	\$1,000
Clean Coal Power Initiative – Round 3 FOA	\$800
Industrial Carbon Capture Solicitation	\$1,520
Geologic Formation Site Characterization	\$50
Geologic Sequestration Training & Research	h \$20
Program Direction	\$10
Total, Fossil Energy	\$3,400

[17]

American Recovery & Reinvestment Act of 2009 Industrial CCS (\$1.52 B)

Objectives

- Capture 75% of the CO_2 from the treated industrial stream
- Store 1 million TPY of CO_2 in a saline formation or other value-added options
- Investigate novel CO₂ use / reuse technologies
- Planned Competitive Awards
 - Large-Scale CCS Projects (1.32 B)
 - Innovative Concepts for Beneficial CO₂ Use (\$100 M)
- Staged Competition
 - Phase I Project Feasibility/Definition
 - Competitive down-select after 7 months
 - Award Phase II projects by Sept. 30, 2010
 - Complete by September 2015
- Cost Share
 - Private cost share $\geq 20\%$
 - Target 50% for commercial scale projects,

FutureGen Restart

- New Limited Scope Cooperative Agreement (7/09 3/10)
 - Preliminary Design, Revised Cost Estimate & Funding Plan
 - Rapid restart of preliminary design activities.
 - Completion of a site-specific preliminary design and updated cost estimate.
 - Expansion of the Alliance sponsorship group.
 - Development of a complete funding plan.
 - Potential additional subsurface characterization.
 - Key Deliverables
 - Revised cost estimate
 - Alliance funding plan
 - Estimated Cost \$17.8 Million (\$14.3 M DOE share)
- on
- Go/No-Go Decision 1/29/2010
 - \$1.073 Billion maximum DOE contribution for remainder of project
 - Project currently estimated at ~\$2.4 Billion

More Information on Our Websites

NETL <u>www.netl.doe.gov</u>

20

Office of Fossil Energy <u>www.fe.doe.gov</u>

