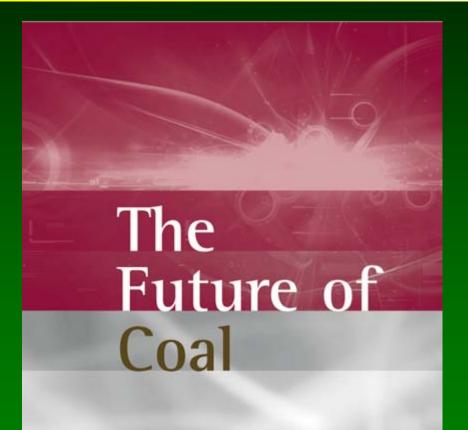
The Carbon Capture and Storage (CCS) Challenge: From Megatonnes to Gigatonnes

2009 MIT-NESCAUM Summer Air Quality Symposium Howard Herzog MIT August 11, 2009

Howard Herzog / MIT Energy Initiative

Newsweek, April 16, 2007

Coal is the cheapest and dirtiest source of energy around. If we cannot get a handle on the coal problem, nothing else matters.



96 NEWSWEEK APRIL 16, 2007

IAN TEH-AGENCE VU

Howard Herzog / MIT Energy Initiative

The MIT Coal Study

AN INTERDISCIPLINARY MIT STUDY

Released March 14, 2007
On web at mit.edu/coal

• We conclude that CO₂ capture and sequestration (CCS) is the critical enabling technology that would reduce CO₂ emissions significantly while also allowing coal to meet the world's pressing energy needs.

CCS Today

- All major components of a carbon capture and sequestration system are commercially available today.
 - Capture and compression
 - Transport
 - Injection
 - Monitoring
- However, there is no CCS industry even though the technological components of CCS are all in use somewhere in the economy, they do not currently function together in the way imagined as a pathway for reducing carbon emissions.

CO₂ Injection Projects Million Tonne per Year Scale

Project	Leader	Location	CO ₂ Source	CO ₂ Sink
Sleipner	Statoil	North Sea	Gas	Deep Brine
(1996)		Norway	Processing	Formation
Weyburn	Pan	Saskatchewan	Coal	EOR
(2000)	Canadian	Canada	Gasification	
In Salah (2004)	BP	Algeria	Gas Processing	Depleted Gas Reservoir
Snovit	Statoil	Barents Sea	Gas	Deep Brine
(2008)		Norway	Processing	Formation

The Scale-up Challenge From Megatonnes to Gigatonnes

- We have yet to build a large-scale (>1Mt CO₂/yr) power plant CCS demonstration
- In order to have a significant impact on climate change, we need to operate at the billion tonne (Gt) per year level
- This implies that 100s of power plants will need to capture and store their CO₂

Challenges for Large-Scale Deployment

• Costs

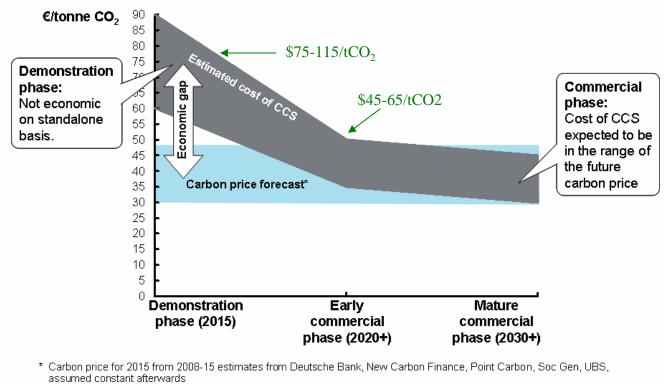
- Transportation Infrastructure
- Subsurface Uncertainty
 - Storage Capacity
 - Leakage from Storage Reservoirs
- Regulatory and Legal Issues
- Public Acceptance

CCS Costs

- Considerable uncertainty in cost estimates
 - Volatility in markets
 - Recent data sparse
 - Dealing with "first-of-a-kind" technology
- Significant factor in CCS costs is the high parasitic energy load – about 25% of power plant output for coal-fired plants

Capture and Compression Capital Costs

Power	Capture	Capital	Power	\$/kW
Plant	Technology	Investment	Output	
SCPC	Post- Combustion	+23%	-24%	+62%


Comparison of Capture Technology Pathways

	Plusses	Minuses
Post- Combustion	Compatible with existing infrastructure; retrofits; flexibility	Current methods have high energy penalties
Oxy- Combustion	Potentially less expensive than post- combustion; retrofits	Cost of oxygen; lack of experience
Pre- Combustion	Projected lowest incremental cost for capture	Slow progress of IGCC in power sector

Estimated CCS Costs for Coal

- Estimated CCS Costs for coal:
 - additional \$40 per MWh to cost of generation
 - \$60-65/tonne CO₂ avoided
- This cost assumes:
 - **2007**\$
 - Nth plant
 - 90% capture
 - Includes transport and storage (~\$10/tonne CO₂ avoided)
 - Based on SCPC technology with post-combustion capture
 - Today's technology (i.e., no technological breakthroughs required)
 - Regulatory issues resolved without imposing significant new burdens
 - Operations at scale
- For details see:
 - http://sequestration.mit.edu/pdf/GHGT9_Hamilton_Herzog_Parsons.pdf

McKinsey and Company Report

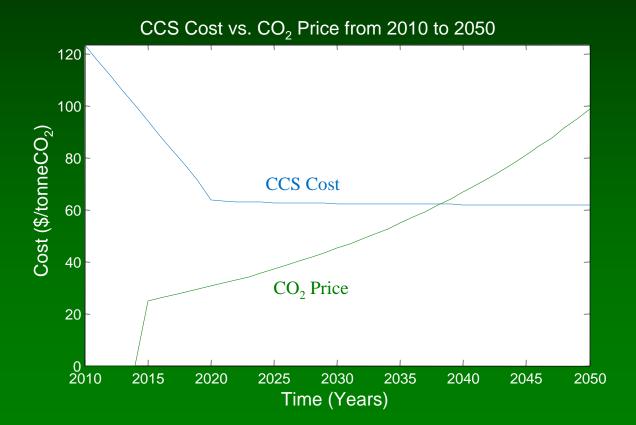
Source: Reuters; Team Analysis

From Carbon Capture & Storage: Assessing the Economics, McKinsey and Company report

http://www.mckinsey.com/clientservice/ccsi/pdf/ccs assessing the economics.pdf

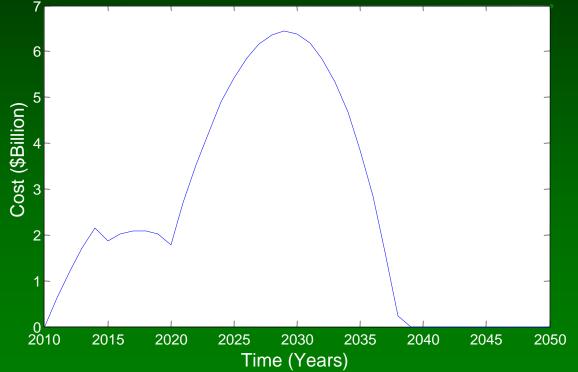
Howard Herzog / MIT Energy Initiative

Harvard Report

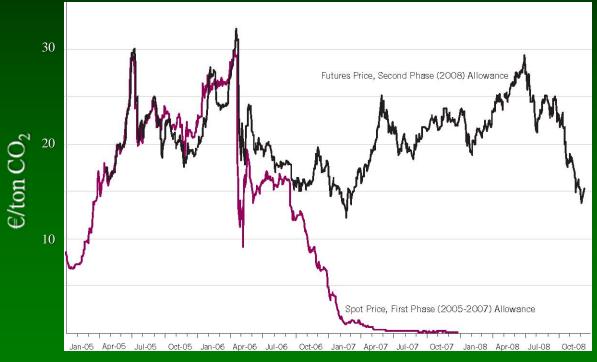

• Results:

- FOAK: \$100-150/tCO₂ (McKinsey: \$75-115)
 NOAK: \$30-50/tCO₂ (McKinsey: \$45-65)
- Criteria:
 - Analysis of existing data (versus a bottom-up cost study)
 - Does not include transport costs
 - For 2005/2006 cost levels (assumes we come off 2008 peak)

From Al-Juaied, Mohammed A and Whitmore, Adam, "Realistic Costs of Carbon Capture" Discussion Paper 2009-08, Cambridge, Mass.: Belfer Center for Science and International Affairs, July 2009.


http://belfercenter.ksg.harvard.edu/files/2009_AlJuaied_Whitmore_Realistic_Costs_of_Carbon_Capture_web.pdf

At first, a cap-and-trade system will not be sufficient for deployment



US Deployment Gap \$125 Billion

Above-Market CCS Cost Per Year

EU-ETS CO₂ Price History

Source: Point Carbon and ECX.

Howard Herzog / MIT Energy Initiative

Transportation Infrastructure

- What will pipeline networks look like?
 - National network like natural gas?
 - Regional networks like utility grids?
- Chicken vs. Egg
 - Infrastructure in place will enable CCS, but
 - Can we afford to build infrastructure before there is a critical mass of CCS activity in an area
- How to regulate
 - The future CCS regulatory environment will depend on the industrial organization of the sector.
 - Issues include access, pricing, anti-trust
 - Regulation of gas pipelines very different than oil pipelines

Storage Capacity

- IPCC available evidence suggests that, it is likely that there is a technical potential of at least about 2000 GtCO₂ of storage capacity in geological formations
- US DOE For US saline formations, 920 3400 GtCO₂
- Reports from field we just do not know

Leakage from Storage Reservoirs

- IPCC Observations from engineered and natural analogues as well as models suggest that the fraction retained in appropriately selected and managed geological reservoirs is very likely to exceed 99% over 100 years and is likely to exceed 99% over 1,000 years.
- CO₂ Storage represents a minimal health and safety risk
- Reports from field Confidence in these predictions

Regulating Geologic Storage of CO₂

• Key issues

- Legal access to the geologic formation
- CO₂ injection (today under UIC Program)
- Long-term stewardship
- Credit under climate regulation
- Issues
 - Federal vs. state
 - Multiple regulations vs. unified regulation
 - Regulatory requirements (e.g. monitoring and verification) commensurate with the risks
 - Private vs. public role

Public Acceptance

- All technologies must deal with this issue (includes NIMBY)
- Hydrogen Energy's Carson Project
 - Opposition led by Environmental Justice movement
 - Relocated from LA area to Bakersfield area
- Shell project in Barendrecht, Netherlands
 - 400,000 tons per year
 - Source: Pernis refinery
 - Opposition major issue technology "unproven"

MIT Coal Study Central Message

- Demonstration of technical, economic, and institutional features of carbon capture and sequestration at coal conversion plants will
 - give policymakers and the public greater confidence that a practical carbon emission control option exists
 - shorten the deployment time and reduce the cost for carbon capture and sequestration should a carbon emission control policy be adopted, and
 - maintain opportunities for the lowest cost and most widely available energy form to be used to meet the world's pressing energy needs

Large-scale Demos

- Characteristics (from MIT Coal Study)
 - On order of 10 worldwide
 - Scale of a million tons per year
 - In a variety of geologies
- G8 called for 20 worldwide by 2020
- Recent Activity
 - EU: 300 million permits from ETS
 - US: Support in stimulus bill
 - Australia: Global Carbon Capture and Storage Institute

Contact Information

Howard Herzog Massachusetts Institute of Technology (MIT) **Energy** Initiative Room E19-370L Cambridge, MA 02139 Phone: 617-253-0688 E-mail: hjherzog@mit.edu Web Site: sequestration.mit.edu