
An Industry Perspective on Coal and CCS

MIT-NESCAUM Symposium

New Directions in Energy Policy and Impacts on Air Quality

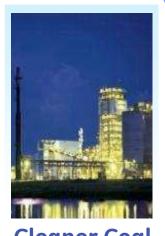
Power

Industrial

Polygen

There is no "silver bullet"

Bioma


Nuclear

Gas

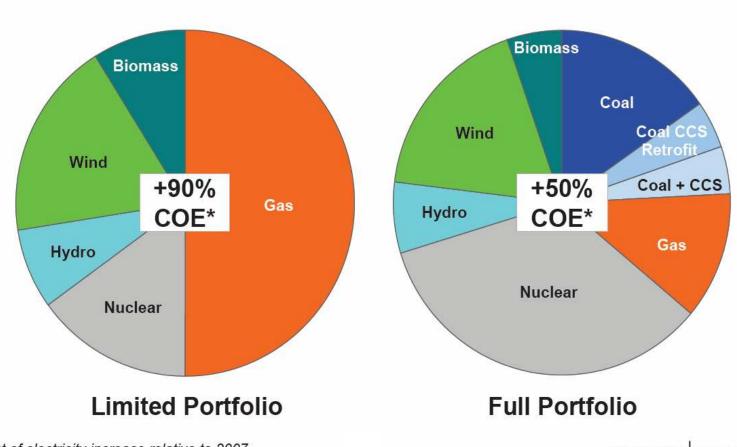
Coal technology focus

- CAPEX
- CO2
- Cycle time
- Fuel envelope

Cleaner Coal

Asset Optimization

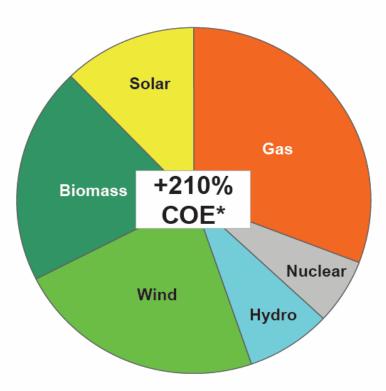
Network Reliability


Environmental Services

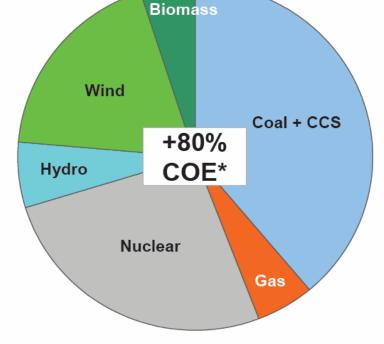
EPRI 2009 PRISM/MERGE Analysis -2030

Impact of limited carbon management technology portfolio at 2030

Remarkably different futures...and only 20 years away!



^{*} Cost of electricity increase relative to 2007


© 2009 Electric Power Research Institute, Inc. All rights reserved.

EPRI 2009 PRISM/MERGE Analysis - 2050

Full Portfolio

^{*} Cost of electricity increase relative to 2007

Coal: a critical but challenged resource

 "Coal is a national and globally abundant, low cost resource that is and will continue to be a predominant generation choice in developing nations."

John Krenicki, GE Vice Chairman
Testimony before the Environment & Public Works Cmte, U.S. Senate, July 16, 2009

 "Coal is an abundant, reliable, and a relatively inexpensive energy source. Using it is necessary for energy independence and US competitiveness."

John Rice, GE Vice Chairman

The utility's dilemma

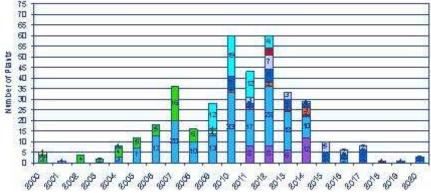
Legislative & regulatory uncertainty

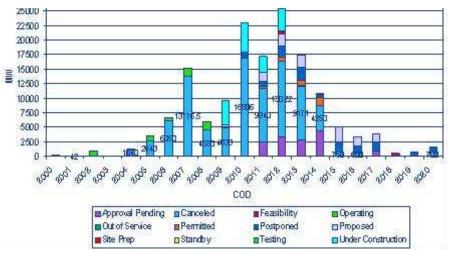
Public Utility
Commissions
"Give me the lowest
cost"

Carbon credit pricing, incentives & costs

Political & enviro "Give me carbon capture NOW"

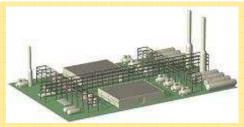
Return & safety for shareholders


Technology readiness


Reality -coal is disappearing as an option

- •Since 2001 the coal industry has had 177 plants and a total of 87GW cancelled
- Aging coal fleet 32%
 average efficiency
- New coal plants required to develop CO2 BACT analyses
- NSR fines and even shutdowns of existing plants

MW of Plant Cancellations



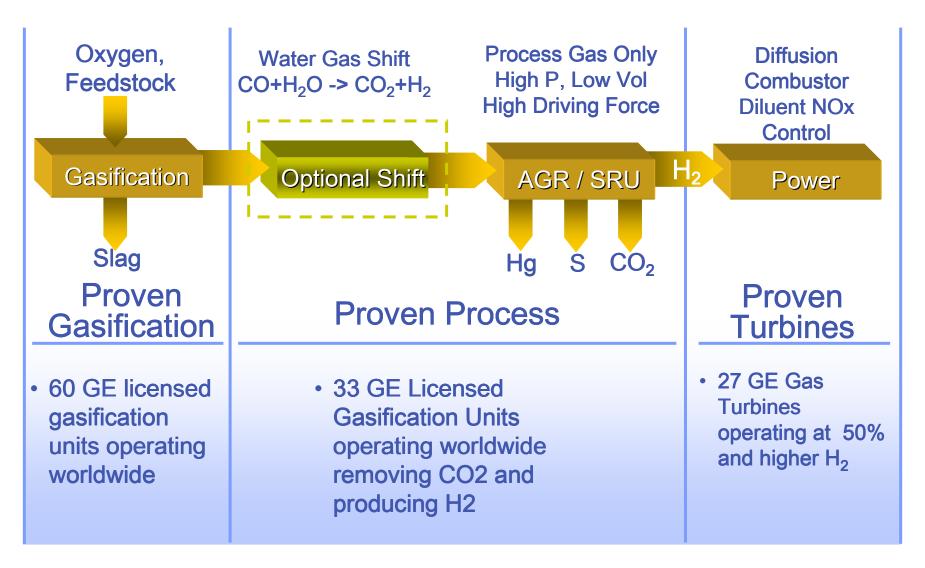
Investing and Delivering for Coal Growth

IGCC 630 MW Plant 630MW net 38.5% HHV
Carbon capture ready
In construction at Edwardsport

GE Carbon Carbon capture retrofit
Natural gas equivalency
Alliance with Schlumberger

High Plains Technology Center

Expand IGCC fuel envelope Joint with U of Wyoming \$100MM invest – 2012 COD


207FB IGCC Power Block

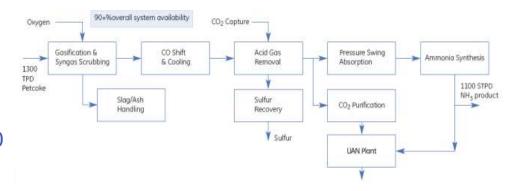
Syngas 234MW GT 4 Flow G-33 ST CC Hydrogen capability

IGCC CO₂ Capture Readiness

Example: Proxy for Power Carbon Capture

Coffeyville Resources (CVR)

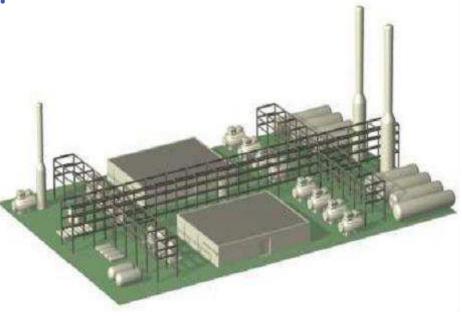
- Nitrogen fertilizer
- Licensed 1997; Start-Up 2000
- Feedstock: Petroleum Coke
- Design Capacity: 1,300 STPD
- >90%+ system availability


• Similar to IGCC with CO₂ capture:

- SelexolTM solvent
- Gasifiers: 2 x 900 ft3 Quench
- Operating Pressure: 620 psig (43 bar)

CO₂ Capture

- >90% capture (from shift effluent)
- CO₂ meets Kinder-Morgan pipeline specification (EPRI analysis)
- 30% of the CO₂ is compressed to 2,200 psia for fertilizer production



GE's Carbon Island™

- Commercially offered
- Greenfield or retrofit
 - Low cost/performance impact
 - Integrated with existing Acid Gas Removal (AGR)
 - Installed during turbine maintenance
- Flexible carbon capture options
- 585 MW output¹
- 33% HHV Eff²
- Tie-ins matched GT outages

¹ From 630MW base ² From 38.5% base

NG Eq. CO₂ Footprints

- <u>Simple Cycle:</u> 50% carbon capture (~1,100 lb/MWh)
- Combined Cycle:
 65% carbon capture
 (~770 lb/MWh)

GE & Schlumberger Alliance

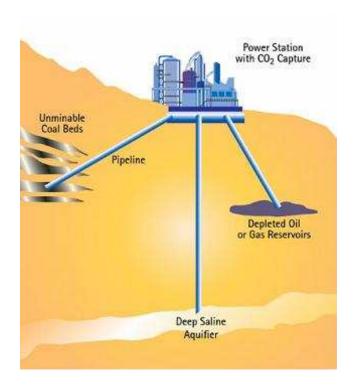
IGCC Plant

Total Carbon Solution

- Schlumberger: site selection, characterization, design & construction, monitoring, decommissioning
- GE: IGCC & carbon capture

Alliance Benefits

- Aligns buying cycle
- Coordinates engineering & construction of storage & facility
- Integrates operations/maintenance profile
- Develops CO₂ specs based on specific projects and geologic formation


Purpose

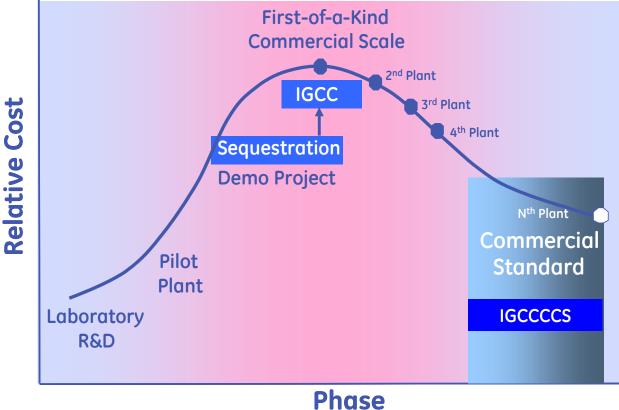
- Accelerate the use of IGCC with CCS technology
- Technical & commercial certainty for coalbased power generation

The future of CCS

Will Carbon Capture and Storage Become

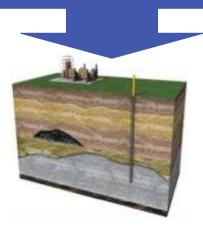
Mainstream?

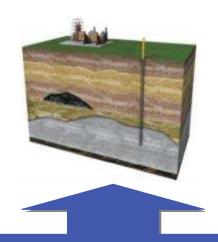
Issue	Challenge
Price Incentives	Private sector players need strong and stable price to ensure that they will earn a reasonable return
Legal Risk	Tort and contractual liability remain too high for utilities to pipe or store CO2 near urban centers
Cost	Higher than expected infrastructure costs associated with CO2 pipeline network and large injection plumes for each coal plant
Public Perception	NUMBY Widespread public protests against CCS projects in their communities.
R&D and Demo Funding	Government funding inadequate to prove that CCS is commercially viable and poses acceptable risks



Crossing the "Peak of Despair"

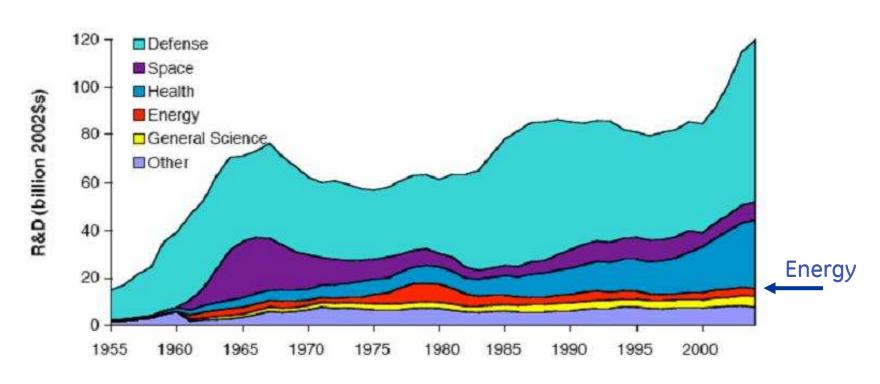
Path to Reducing Cost


- Mature core technology
- Standard design
- Cycle reduction
- Simplification
- Sourcing pipeline
- Material substitution
- Margin validation/reduction
- Performance/RAM optimization



Carrots and sticks

Regulations/Mandates
Supply Information
Consumer Tax Incentives
Consumer Price Subsidies

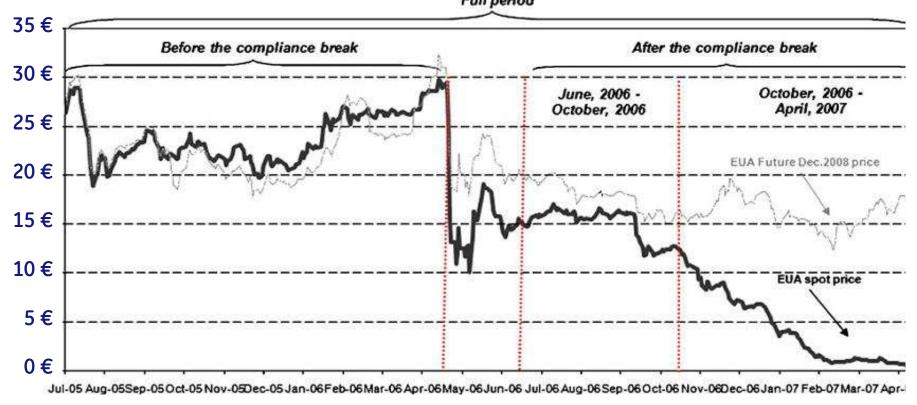


Supply PUSH

Supportive Legal Regime
Supply Information
Deployment Incentives
OEM R&D Subsidies

US funding history has not been kind to Energy

US Energy Funding Relative to Other Priorities



CO₂ a basis for financeable projects?

EUA price development July 1, 2005 to April 30, 2007

Source: Powernext Carbon and ECX

Early incentives needed to mitigate risk

imagination at work

CCS regulatory gaps

Carbon Capture

CO₂ Transport CO₂ Storage

No current carbon value

Cap and Trade to provide long-term market price

Performance standards to motivate deployment

Early incentives needed to offset cost

Major national infrastructure investment

Coal plant may require 100kms of pipeline to storage

Will cross jurisdiction boundaries & land ownership

Eminent domain debate

Ownership of CO₂ & long-term liability

Property rights & trespass

Ownership of "pore space"

Mitigation & Enforcement

No-harm/No-foul

State vs. Federal jurisdiction

Global strategy for commercializing CCS

CO₂ value mature market

Phase I (Now - 2015)

- Government support for 5 large scale commercial CCS projects
- Integrated CC+S demos with min. 1M tons of CO2
- Build IGCC CC-Ready with pre-characterized storage sites
- Storage regulations
- Government assumes long term liability of storage

Validated sequestration & integration with CC

Phase II (2015 - 2020)

- Government incentives for first movers in Cap & Trade
- Performance standards
- New build is 65% capture
- Retrofit installed base to NG equiv. CO₂ (65%)

Deployment to slash CCS cost

Phase III (2020 - 2030)

- Mature and stable carbon market
- CCS cost intersects carbon price
- International credit mechanism
- Phase-out of incentives
- Further increases in capture levels driven by reduced CCS cost and carbon market signals

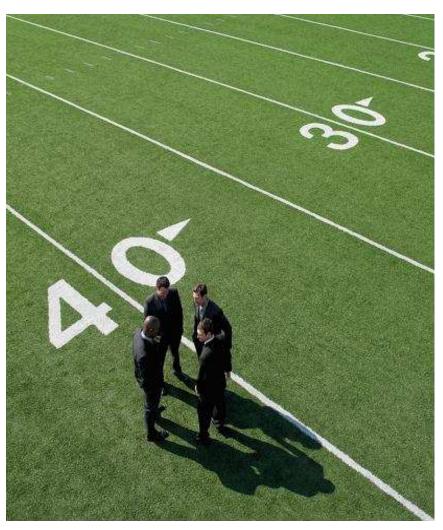
CCS commercially mature option for climate targets

What's the playbook for cleaner coal?

Begin CCS deployment now

- We already know how to capture carbon and there has been a lot of sequestration
- We are ready to prove that capture and sequestration can be successfully integrated
- Getting steel on the ground is the fastest and surest path to reducing cost

• Continue RD&D of post-combustion capture


- Differing roles for pre-and-post combustion capture
- We need solutions for the existing fleet

• Establish a new private/public initiative

Competitively awarded grants to deploy 5
 US commercial-scale 500-1000 MW
 Cleaner Coal Power Plants with CCS

Make it International

 Couple this initiative to China, Australia and others on a plant-per-plant basis.

Questions?

Impacts on Air Quality

imagination at work

Power

Industrial

Polygen