

Presented by: Steve Przesmitzki, PhD Fuels Performance Group NREL

MIT-NESCAUM Symposium MIT Endicott House August 11-12, 2009

DOE Contacts: Vehicle Technologies - Kevin Stork Biomass - Joan Glickman, Shabnam Fardanesh

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Biofuels Overview

- Meeting Biofuels Targets with Ethanol RFS
- Intermediate Ethanol Blends Test Program
 - Overview
 - Project descriptions & status
 - Results to date
- Conclusions
- Information Resources

U.S. Biofuels Current Status

U.S. Consumption Gasoline: 140 bgy Diesel: 60 bgy

Biodiesel¹

- 176 commercial plants
- 2.6 bgy capacity (2009)
- 0.7 bg produced (2008)

Corn Ethanol²

- 178 commercial plants
- 11.4 bgy capacity (+ 2.1 bgy planned) (2009)
- 9.2 bg produced (2008)

Cellulosic Ethanol³

- 13 demo plants DOE-funded
- ~.250 bgy capacity projected
- More plants projects to be awarded

bg = billion gallons; bgy = billion gallons per year

Sources: 1- National Biodiesel Board, 2- Renewable Fuels Association, 3- DOE Biomass Program

~1,900 E85 stations

U.S. Biofuels Goals

U.S. Consumption Gasoline: 140 bgy Diesel: 60 bgy

Cellulosic Ethanol

- Cost Competitive with gas by 2012
- Both biochemical and thermochemical conversion pathways
- Current estimate: \$2.40/gallon

Renewable Fuel Standard

- 36 bgy of renewable fuels by 2022
- Caps corn ethanol at 15 bgy
- Advanced biofuels at 21 bgy

Ethanol 30x30 Goal

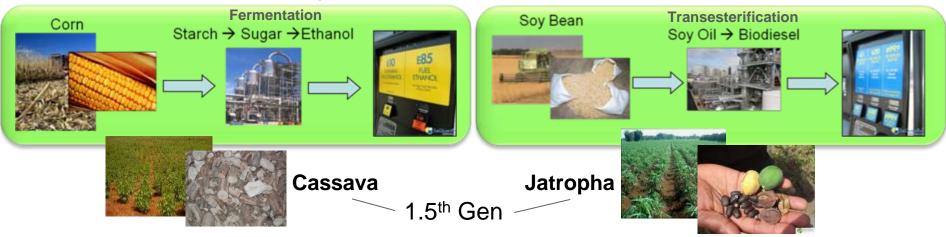
- Internal DOE goal
- Equates to ~ 60 bgy
- Replaces 30% of current gasoline usage by 2030

bg = billion gallons; bgy = billion gallons per year

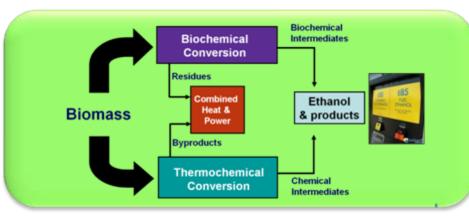
Biofuels Sustainability

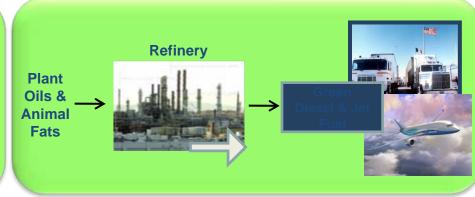
Food vs. Fuel Debate

Indirect Land Use Change (iLUC)



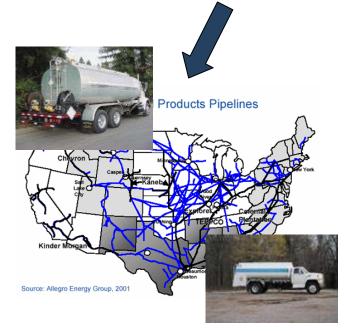
Sustainability Analysis/Life Cycle Assessment

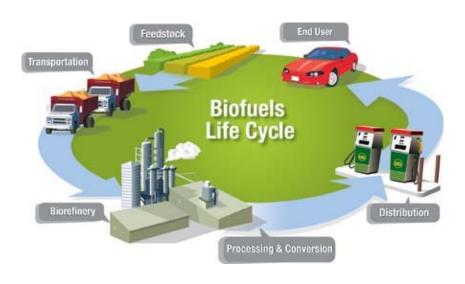

Generation 1 & 2 Biofuels



• 1st Gen -- from sugar/starch crops, plant oils, or animal fats

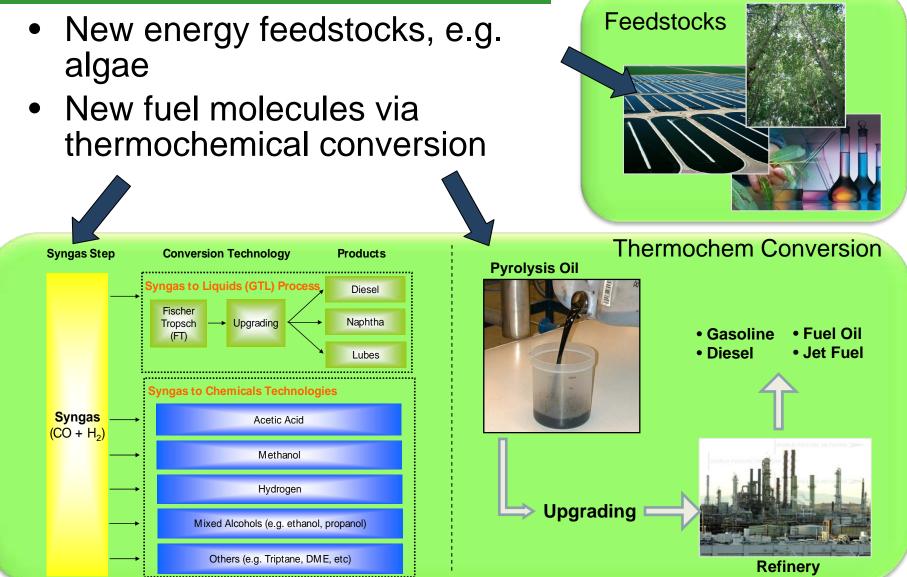
• 2nd Gen – cellulosic ethanol, green diesel


Why Follow-On Generations ?

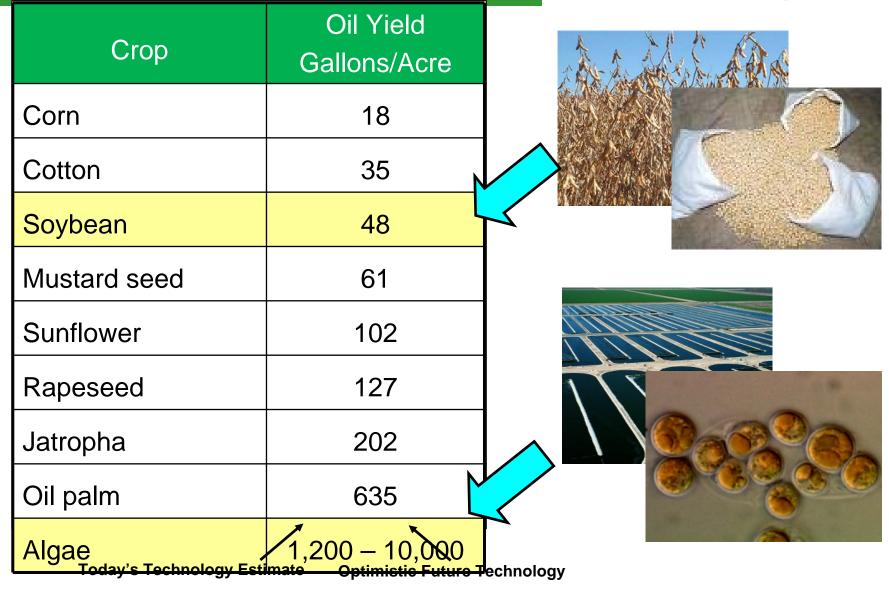


3rd & 4th Generations

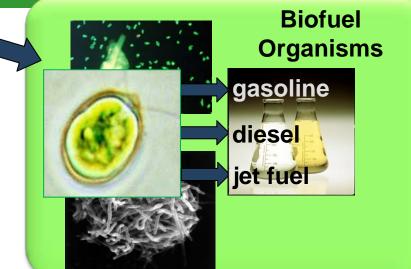
- Higher energy density
- Gasoline/diesel-like molecules
- Suitability for wider range of end use
- Better temperature and cold start ability
- Infrastructure compatibility

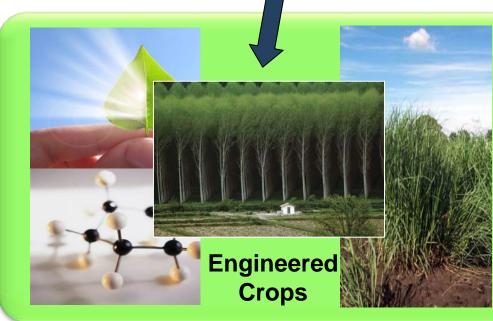


3rd Generation (New Feedstocks & Fuels)



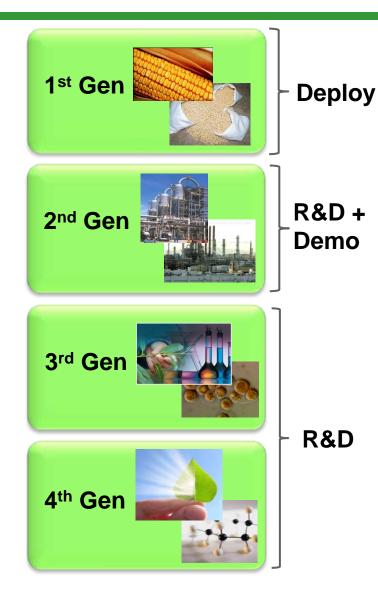
Comparing Potential Oil Yields





4th Generation (Systems Biology Advances)

- Higher energy density molecules, directly from organisms
- Crops engineered for self lignocellulosic destruction



Status of Next Generation Technologies

2nd Generation

- Numerous DOE-funded demo projects
- Significant industry activity
- 3rd and 4th Generations
 - DOE to initiate several major programs this year:
 - Advanced Biofuels Center(s)
 - Algal Biofuels Center(s)
 - Industry, Academia, and Laboratory involvement in many technologies

DOE Biofuels Funding

U.S. Department of Energy Energy Efficiency and Renewable Energy

FY08 Budget	FY09 Budget	ARRA Biofuels Funding	FY10 Request
\$200M	\$217M	\$800M	\$235M

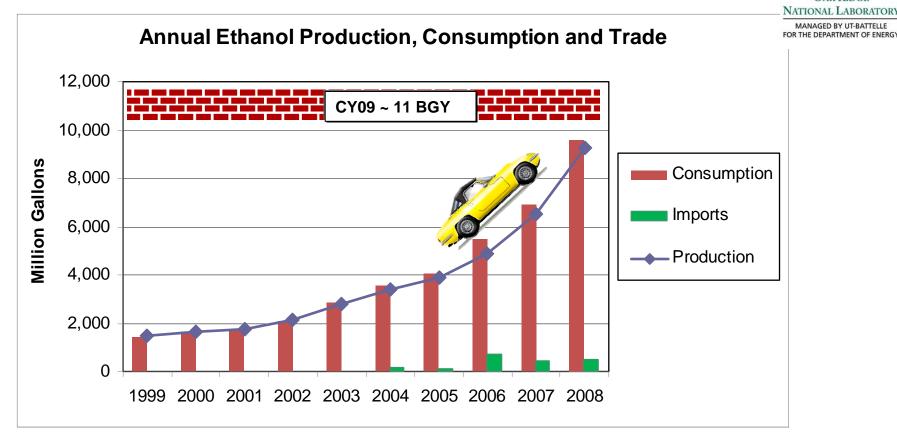
- \$ 45M -- Feedstock Infrastructure
- \$ 65M -- Research & Development
- \$ 690M -- Demonstration Projects

Office of Science

- ~ \$100M/year for basic research
- Including three "Bioenergy

Research Centers"

Agenda



- Biofuels Overview
- Meeting Biofuels Targets with Ethanol RFS
 - Intermediate Ethanol Blends Test Program
 - Overview
 - Project descriptions & status
 - Results to date
 - Conclusions
 - Information Resources

E10 Blend Wall Problem

- DOE strategy for expanding ethanol use breaking the blend wall.
 - Near Term Evaluate feasibility of using mid-level ethanol blends (e.g., E15, E20) in conventional vehicles (non-flex fuel vehicles).
 - Long Term Expand E85 by targeting specific regions/cities.

OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

- Biofuels Overview
- Meeting Biofuels Targets with Ethanol RFS
- Intermediate Ethanol Blends Test Program
 - Overview
 - Project descriptions & status
 - Results to date
 - Conclusions
- Information Resources

Waiver Request Background

Clean Air Act § 211(f) gives EPA authority to declare fuels "substantially similar" to gasoline

- "contribute[s] to the failure of" emissions control systems ⇒ no waiver
- EPA has indicated that they interpret "contribute to" quite broadly e.g., fuel-pump failure might qualify

Intermediate Ethanol Blends Testing – data for EPA / waiver

- Non-FFVs (>97% population)
- DOE Test program:
 - Emissions
 - Driveability / Operability
 - Materials Compatibility
 - Emission Control System Durability (Full Useful Life)

NREL National Renewable Energy Laboratory

OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Vehicles

Emissions

- 16 vehicle pilot study (including catalyst temperature) Report (Feb. 2009)
- Evaporative Emissions (with CRC and EPA) (8 vehicles) Report (2Q 2009)

Cold Start and Driveability

• Sub-50°F testing completed (with CRC, 6 vehicles) - Report (Nov. 2008)

Small Non-Road Engines

Emissions

• 6 engine pilot study (including exhaust temperature) – Report (Feb. 2009)

Full Useful Life Emissions and Durability

• 17 / 22 engines to full life - Report (Feb. 2009)

DOE Intermediate Ethanol Blends Test Program Emissions / Temperature Regulated tailpipe emissions with E15 and E20 were similar to levels with E0 when averaged across multiple newer 'clean' vehicles in pilot study. Change in catalyst temperatures may affect durability – results not clear yet.

Driveability

- No driveability issues found with either E15 or E20
- No malfunction indicator lights or filter plugging •
- Informal observations only ۲

Results: Vehicles

Fuel Economy

- Fuel economy on volumetric basis decreased for E10, E15, E20
- Closely tracked fuel energy content

Emissions Durability???

Results: Small Engines DOE Intermediate Ethanol Blends Test Program

Emissions/Temperature

- With increasing ethanol content:
 - Regulated emissions combined HC+NOx – decreased in most cases
 - Engine and exhaust temperatures increased

Durability

- Commercial engines no particular sensitivity observed
- Smaller, residential engines not clear

Safety

Potential issue – spontaneous clutch engagement (Correctable with carburetor adjustment)

OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE

FY2009/FY2010 Vehicle Testing **DOE Intermediate Ethanol Blends Test Program**

Tailpipe Emissions (with EPA)

- Phase 1 and 2 completed
- Phase 3 underway; results expected Feb. 2010

Full Useful Life Emissions Study (with CRC and EPA)

- Testing underway
- **Results expected 2010**
- Interim results Summer 2009 and beyond

Evaporative Emissions (with CRC and EPA)

- Project in initial stages
- CRC Report expected in 2010

Fuel System Materials Compatibility (with CRC)

- Testing underway
- Results expected by October 2009

"Cold Start" and Driveability (with CRC)

- Testing at high ambient temperature
- Tentative start and completion Summer 2010

Innovation for Our Energy Future

Agenda

- Biofuels Overview
- Meeting Biofuels Targets with Ethanol RFS
- Intermediate Ethanol Blends Test Program
 - Overview
 - Project descriptions & status
 - Results to date
- Conclusions

Information Resources

- Biofuels include more than just corn ethanol.
- Ethanol is the only solution to meet RFS in the near-term – mostly from corn.
 - Problem: Ethanol use is approaching a 'blend wall'.
 - Solution: Intermediate ethanol blends (E15/E20) and expanded E85 use.
- Testing on E15/E20 is still ongoing most results due in 2010.

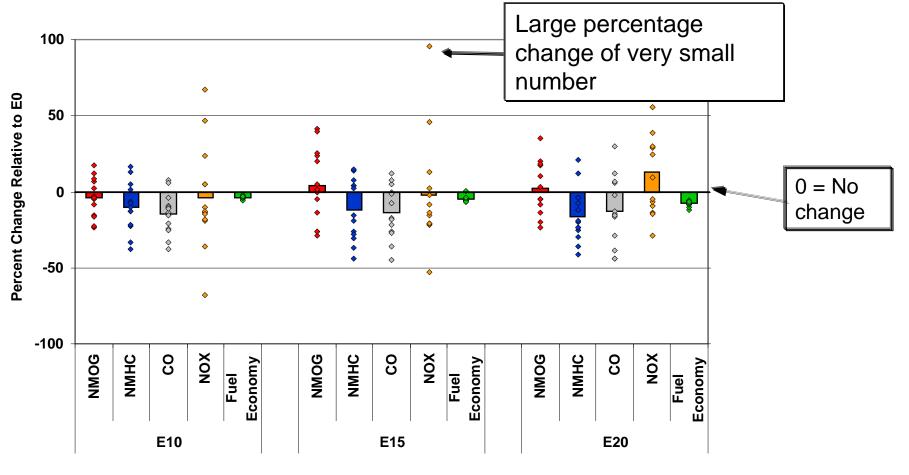
Agenda

- Biofuels Overview
- Meeting Biofuels Targets with Ethanol RFS
- Intermediate Ethanol Blends Test Program
 - Overview
 - Project descriptions & status
 - Results to date
- Conclusions
- Information Resources

Information Resources

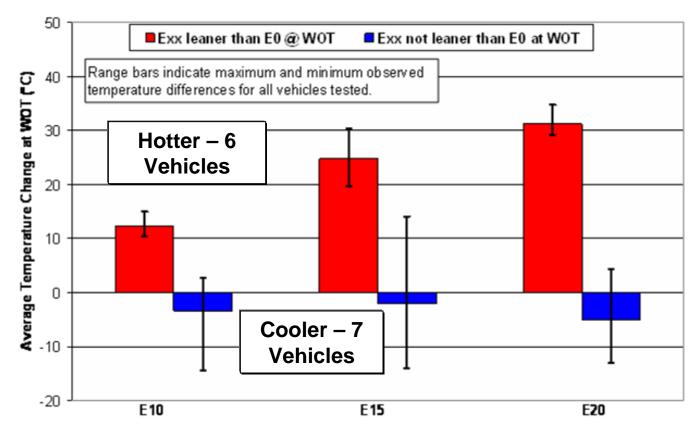
NREL - http://www.nrel.gov

- Oak Ridge National Laboratory <u>http://ornl.gov</u>
- DOE Office of Vehicle Technologies http://www1.eere.energy.gov/vehiclesandfuels/
- DOE Office of Biomass Program http://www1.eere.energy.gov/biomass/
- EERE Info Center www1.eere.energy.gov/informationcenter
- Alternative Fuels Data Center http://www.eere.energy.gov/afdc/fuels/ethanol.html
- Bioenergy Feedstock Information Network http://bioenergy.ornl.gov/
- Biomass R&D Initiative <u>www.biomass.govtools.us</u>
- Grant Solicitations <u>www.grants.gov</u>
- Office of Science http://www.er.doe.gov/


Intermediate blends Report #1 (updated) - <u>http://feerc.ornl.gov/publications/Int_blends_Rpt1_Updated.pdf</u>

Backup Slides

Results: Vehicle Emissions & Fuel Economy


- Given the scatter in the testing, the average emissions were relatively unchanged from E0.
- The reduction in fuel economy due to ethanol was predictable and statistically significant.

Results: Vehicle Catalyst Temperatures

- Approximately half the vehicles had an increase in catalyst temperature at full power. Otherwise, the catalyst temperatures were lower for all vehicles under all other driving conditions.
- The effect of higher temperatures at full power is still unclear and being tested by DOE.

