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« Context of Health Risk due to Aircraft Emissions
compared to other Sectors

 Aircraft Emissions — Spatio-temporal Profiles

« Air Quality Studies

— Regional-Scale Studies at Select Airports
 Atlanta, Chicago and Providence

— Future Year Assessment
« US-wide impacts

— Airport-Specific Impacts using Sensitivity Modeling
* NAS-wide vs. Top 99 airports in the U.S.
* lllustration for NYC Top 3 airports

— UFP due to Aircraft

— Local-Scale Dispersion Studies
* Los Angeles International Source Apportionment Study

 Conclusion
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Premature Mortality Counts

PMZ.S O3
200K [95% CI 89K — 367K] 10.1K [95% CI -1.3K — 3.7K]

26%0

Electricower@enerations

Otherd@ndustry?
Commercial/residentialll
Road@®ransportationi
Marine@ransportationf
Rail®ransportationt

CommercialPviationdLTO+Cruise)

Caiazzo et al, AE 2013
Yim et al, AE 2013

Transportation sectors contribution is ~33% for PM, - and 63% for O,
Aircraft contribute about 2% for O; and 1% for PM, - in the U.S.
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Adapted from Masiol et al, 2014
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FAA’s Emissions Model @,
EDMS -> AEDT

H Full domain LTO10K MNLTO3K WLAYER1

wv
c
2
wv
2
£
-}
©
-
o
-
£
o
—_
—
o
K=
=
>
]
=
i
c
o
o
=S

* Only landing and take-off (below 3000 ft) includes climb out, approach, taxi, and idle
» Estimated from Aviation Environmental Design Tool (AEDT) based on the aircraft locations
« NOx, SO2, VOC, CO + 3 directly emitted components of PM, ¢

EDMS: Emissions Dispersion Modeling System Wilkerson et al, ACP 2010
AEDT: Aviation Environmental Design Tool Baek et a,l 2012
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PM, - formed from LTO emissions at L

3 U. S alrports
Atlanta, Chicago, Providence

Annual Average PM, s Contribution L
Annual Average PM, s Contribution

M Secondary W Prima

Speciated PNks Contribution (uglms)
Aircraft Contribution (%)

ATL_36k ORD_36k PVD_36k ATL_12k ORD_12k PVD_12k
Airport_GridRes ATL 36k ORD_36k PVD 36k ATL 12k ORD_12k PVD_12k

* Focus on Grid-cell containing airport
* Up to 40% of PM, 5 Is due to secondary contribution

Arunachalam et al, AE 2011



Hybrid Modeling with CMAQ and & | uNC
SCIPUFF (Atlanta Airport) W ...

Puff Concentrations Grid Concentrations

Ground Layer
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« Maximum puff conc > 10x grid conc, vary between 6.1 —42.1 ug/m3
« Use of a subgrid-scale treatment may be less important if one seeks to understand only median
Impacts, but provides insight in revealing potential max impacts masked by grid-scale modeling

Rissman et al, ACP, 2013 3
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K . B -3
Hours {assuming [DH] =3x 11]E molecules cm :} Hours {ﬂB'!il.lﬂlll'lQ [0“] =3 %10 molecules cm }
0 20 40 60 8.0 0 0s 1.0 1.5 1.75

b) 7% load ™ SOA
Bl Secondary sulfate m Secol:bdarysulfate
m Al primary 2 o = All primary
1

I
1.0 2.0 3.0

0 025 05 075 1.0 1.25

d) 85% load ™ SOA
| Secondary sulfate m Secondary sulfate
m Al primary - m Al primary

=

0.0 1.0 2.0
Time from lights OM (hrs)

1.0 2.0
Time from lights ON (hrs)

* Measured changes in PM mass at different loads (4% idle; 7% taxi, 30%
landing and 85% takeoff)
« Traditional SOA model underpredicts total SOA by ~60% at 4% load, and
~40% at 85% load
Miracolo et al, ACP 2011



Non-traditional SOA Contributions to Ul UNC

P M 2.5 at AT L THE ENVIRONMENT
PM, . NTSOA NTSOA/PM, :*100

Woody et al,
ACP 2015

 NTSOA formed from oxidation of S/IVOCs, typically not accounted for in AQMs
 NTSOA contributed 1.7 — 7.4% at ATL; ~6x higher than aircraft TSOA
* NTSOA comprised up to 30% of aviation-attributable PM, . downwind of ATL

BBV
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Aviation attributable PM, I

contributions — Current and Future
- U.S. Wide activity
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 Future year 2025 PM, ; impacts due to aircraft activity growth is 5.5x that of 2005 (using
2005 climate)

« Most of this growth is due to increase in “Free ammonia” in 2025 (8% A in background
NH, and 35% W in background NO, emissions)

* Incorporating change in climate increases this to 5.9x (~7% additional contribution)

Woody et al, AE 2011 11



Future Year AQ Impacts of Growth il | PINC,,
Aviation from 2005 to 2025
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Contribution Relative to 2005

il
Ratio of Contributions from Aircraft to
98th Percentile NO, Daily Max Relative

Ratio of Occurrences > Threshold
Relative to 2005

(=]

AEC ANH4 ANO3 ASO4 PM25
Species US Average 99 Airports
2025_CL 2025

Arunachalam et al, 2015 Model Scenario

+ Aviation emissions cause a ~6x increase in future year PM, - impacts, mostly from secondary
components

 # Grid-cells exceeding O; NAAQS (75 ppb) see a 60% A in future year due to change in climate
+ Aircraft emissions increase future year NO, exceedances by 6x in some major urban areas

12
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Primary and Secondary PM, - Impadi
Downwind Distances of Airport

Primary PM, ¢

Primary PM, (i 4
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Atlanta Airport Top 99 U.S. Airports
» Radial analysis of PM, ; from CMAQ-DDM Simulations of 99 U.S. Airports
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Speciated individual airport PM, ¢ W .

sensitivities at home grid cell

Annual Average PM, - (pug/m® )
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When sensitivity of PM, c is disaggregated by precursor, the amount of
PM, . species produced by each tagged input can be seen. Airports shown
in descending order of home-cell PM, - sensitivity.

Boone et al, 2015 14



U.S. airports PM, . sensitivity by

radius
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Each ring represents a 50km radius from the airport;
airports shown in descending order of average sensitivity.
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Absolute and relative contributions of airport LTO activity
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Boone et al,
2015

Higher airport contribution (log,,)—

All-source (incl. aviation) PM, ; (ug/m" )

Higher total aerosol concentration (log,,)—

 Several airports contribute > 0.1% of total PM, . in the vicinity of airport ”



Airport-specific premature fl | UNC

INSTITUTE FOR

mortalities

Premature mortalities per year
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Sensitivities of O; and PM, - due to P
Precursors from NYC airpo?ts [ UNC
- EWR, JFK and LGA
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First order Sensitivity of O3 to All
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CMAQ-DDM Version 5.0.2
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CMAQ-DDM Version 5.0.2
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UFP at Los Angeles

International (LAX) Airport N
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ol

Particle Number Concentration
Normal Background M 2 -4 x Normal
1 -1%xNormal W 4-6 x Normal
1% - 2 xNormal W 6 -8 x Normal

Recent studies indicate that number concentrations of ultrafine particle significantly
increase due to LTO activity in LAX, BOS, AMST, Rome (Hudda et al., 2016; Hudda and
Fruin, 2016; Keuken et al., 2015; Riley et al., 2016; Stafoggia et al., 2016)

Hudda et al., ES&T 2014 19



Aircraft-attributable UFP Impacts il | UNC
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Impact of new CMAQ module to treat aircraft emissions using THE ENVIRONMENT
size characteristics from engine measurements
Traditional New
UFP number
concentration
[#/m3]
UFP number
concentration
[%0]

Huang et al, In
Prep

In airport grid-cells, PM,: mass W by upto ~25%, whereas particle number
concentration (of UFP) by AA upto ~5x at large airports 20



LAX Airport Source Apportionment @l | UNC
Study
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* Los Angeles International (LAX) chosen because
— LAX is one of the top 5 airports in the U.S.
— Los Angeles World Airport (LAWA) conducted the Air Quality
Source Apportionment Study (AQSAS) Phase Il

— Intensive field campaign during two seasons
* Winter (January 31 — March 13, 2012)
« Summer (July 18 — August 12, 2012)
» Over 400 compounds measured at 17 locations
« 4 “core”, 4 “satellite” and 9 “gradient”

Top 15 Busiest US Airports

1,000,000
900,000

800,000
700,000
600,000
500,000
400,000
300,000
200,000
100,000
ORD cLT PHX  PHL  MSP

M 2011 # of Operations 2012 # of Operations M 2013 # of Operations

21



Aircraft LTO Activity at LAX and ™ UNC
monitoring locations M| e
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Emissions from Aircraft sources o UNC
compared to Airport-wide sources at LAX
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Fuel

I V 0 C Storage, 0

Fuel APU,

PM2.5 Storage, 0
»

Storage, 0

Aircraft and GSE dominate NO,
Aircraft dominate SO,

PM, . is from several sources
23



Mean NO, during Summer o UNC
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Summer_2012 — NOX (ug/m3)

maan (havs)

Maring
DerRey

T Oke. NOX
AERMOD

CALPUFF
SCICHEM
wtle S ADMS

[l Aire Haw

AERMOD and SCICHEM predicted means are closer to
observations, while ADMS and CALPUFF tend to overpredict

Arunachalam et al, ACRP Report 179, In Press 24



Summary Points (1 of 2) o UNC
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« Health impacts from PM, . dominate compared to other pollutants
(O,, air toxics) (Levy et aI 2008)

- Secondary PM, . dominates at downwind distances (~200-300 km
from airport), ?hlle primary components dominate in near field
(Arunachalam et al, 2011)

 Future year AQ impacts of aviation growth in U.S. dominated by
nitrate aerosol, largely due to increase in background free ammonia
(Woody et al, 2011)

« Future year aviation-related health impacts in U.S. would increase by
6.1x from 2005 to 2025 (2.1x due to emissions, 1.3x to population,
and 2.3x to background) (Levy et al, 2012)

* Incorporating for change in climate adds another ~7%, which we
attribute as “climate penalty” (Arunachalam et al, 2015)

« Hybrid modeling approach assists with assessing local and regional
AQ impacts of aviation (Rissman et al, 2013)

25
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* NTSOA contributions can be upto ~30% of total PM, - due to

airport emissions (Woody et al, 2015)
— Recently gained knowledge on SOA (TSOA + NTSOA) shifts both
magnitude and composition of aviation-attributable PM, .

- Stringent revisions to health-based standards will likely
exacerbate aviation-related contributions to exceedances in non-
attainment areas

- CMAQ-DDM based sensitivity approach provides potentially
powerful framework to explore attainment/non-attainment issues

« Additional work needed to
— Reduce uncertainties in aircraft emissions of nvPM, and precursors of
voIPM [Stettler et al, 2013; Penn et al, AE 2015]
— Characterize UFP impacts (Mass vs. Number on a size-resolved basis)
— Enhance local-scale dispersion models to represent aircraft sources
adequately for accurate local-scale impact assessment

26
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