Decadal trend of ozone-NOx-VOC sensitivity over New York City: the view from space

Xiaomeng Jin¹, Arlene M Fiore¹, Lee T Murray², Luke Valin²

- 1. Lamont-Doherty Earth Observatory of Columbia University, New York, NY
- 2. Dept. of Earth and Environmental Sciences, University of Rochester, Rochester, NY
 - 3. U.S. EPA Office of Research and Development, Research Triangle Park, NC

Abstract

Determining the most effective strategy for mitigating local surface ozone pollution requires knowledge of the relative ambient concentration of NO_x to VOCs in the air. Satellite observations of the tropospheric column ratio of HCHO (a marker of VOCs) to NO₂ (a marker of NO_x) have been used as an indicator to identify areas which would benefit from reducing NO_x emissions (NO_x-sensitive), and areas where reducing VOC emission leads to lower ozone (VOCsensitive or NO_x-saturated). However, quantitative use of this indicator ratio is subject to three major uncertainties: 1) correlations between O3 sensitivity and the indicator species may shift under different meteorological and photochemical conditions; 2) the ratio of the vertically integrated column may not represent the near-surface environment; 3) products retrieved from satellite instruments may contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument (OMI). We find that FNR in the model surface layer is a robust predictor of the nearsurface O_3 production regime. The extension of this surface-based predictor to a column value requires accounting for differences in HCHO and NO₂ vertical profiles. The space-based observation reveals earlier spring transition to NO_x-limited regimes New York City between 2005 and 2015. Increasing NO_x sensitivity implies that NO_x emission reductions will improve O₃ air quality more now than it would have a decade ago.