New York City Community Air Survey: 2009-2015

New York City Metro Area Energy and Air Quality Workshop

5/25/17

Iyad Kheirbek

Bureau of Environmental Surveillance and Policy, NYC Department of Health and Mental Hygiene

Air Pollution and Public Health in NYC

- Despite improvements, NYC air quality still remains at levels harmful to public health
- Concentration-response relationships for these health effects are observed at levels below clean air standards.
- Ongoing City efforts to improve levels beyond State/Federal action

Air Pollution and Health Disparities

- Demographic and geographic variation in populations susceptible to air pollution effects.
- Regulatory network not designed to capture spatial variation in air quality
- Several prior singleneighborhood studies showed elevated levels in some neighborhoods

Public Health Burden of PM_{2.5} and O₃

- PM_{2.5}: Contributes to 2,000 premature deaths and 6,000 ED visits and hospitalizations each year, (2009-2011)
- Ozone: Contributes to 400 premature deaths and 5,900 respiratory hospitalizations each year, (2009-2011)
- Higher share of burden in low SES communities, areas with higher underlying rates of disease

Rate per 100,000

New York City's Sustainability Plans

- PlaNYC (2007), OneNYC (2015)
- Include ambitious sustainability and equity strategies
- Air sections, overall goal to reduce emissions from:
 - On-Road vehicles and other transportation
 - Buildings, energy, area sources
 - Capture benefits of greenhouse gas reduction strategies
- Understand the scope of the challenge
 - Collaborative local air quality study: New York City Community Air Survey (NYCCAS)
 - Understand the public health impacts of air pollutants

planyc

One New York

The Plan for a Strong and Just City

DOHMH air quality activities: Using data to inform public/stakeholders

Public health burden analysis NYCCAS: Exposure assessment Epidemiologic studies of risk Quantify impacts of local sources, benefits of control

New York City Community Air Survey (NYCCAS)

- Launched in 2007 as part of PlaNYC: first comprehensive NYC survey of street-level AQ
- Assess year-round variation in multiple air pollutants across NYC neighborhoods.
- Identify sources contributing to intra-urban pollution patterns
- Inform City efforts to improve air quality and provide data to the public and stakeholders
- Provide air pollution exposure estimates for health surveillance and research

NYCCAS goals are different from those of regulatory monitoring

- Regulatory –rooftop locations
 - Track hourly, daily and yearly trends across the metro area
 - Does not measure place-to-place differences within the city
 - Determine attainment with NAAQS
- NYCCAS many street-side locations
 - Measure average place-to-place differences
 - Does not track daily variation
 - Assess relation of concentrations to population and vulnerability

NYCCAS: Saturation Sampling

- Partnership between DOHMH and Queens College
- City-wide saturation sampling:
 - Years 1-2: 150 Sites
 - Years 3-4: 100 Sites
 - Years 5-7: 75 Sites
- Site selection
 - Stratified random sampling (80%) and purposeful allocation (20%)
 - Balance of spatial and source coverage

NYCCAS: Sampling Methods

- 2-Week, street-level, integrated samples taken once per site/season
 - PM_{2.5}, BC, NOx, O₃, SO₂, PM_{2.5}-metals constituents
- Analyze by land use regression (LUR):
 - predict at unmonitored locations
 - assess sources
- Year-round sampling, updated trend/maps issued each year (Local Law 103 of 2015)

NYCCAS Sampling Unit

NYCCAS To Date

Results: PM_{2.5}

Seasonal average range in monitoring sites in 2015: 5.3 – 23.0 μg/m³

Results: NO₂

300		Spatial multator
	Buildings-related emissions	Area of interior built space.
		Traffic density, weighted by
		relative NOx emissions rates by
		vehicle type (car, truck, bus)
		within 250 m
		Percent impervious surface within
		100 m
		Location on a bus route
		(compared to non-bus route
	Traffic-related emissions	locations)

 Seasonal average range in monitoring sites in 2015: 6.8 – 49.4 ppb

Results: SO₂

Results: O₃

	Indicator (inverse relationship)	Spatial Indicator
	NO _x scavanging	Level of NO ₂ measured at the same location
	Tree cover	Tree cover within 50m
2		

- Citywide: Minimal variation year to year
- Seasonal average range in monitoring sites in 2015: 20.6 – 41.7 ppb

Neighborhood Scale AQ/Public Health Modeling

- Goal: Develop methods to evaluate the air quality-related public health burden of local sources and benefits of control at a neighborhood-level
- Methods
 - Improve local-scale emissions inventories
 - Estimate emissions reductions associated with policy implementation, or zero-out for burden analyses
 - Model air quality benefits (CMAQ/WRF 1-km resolution)
 - Model public health benefits, by neighborhood (local health/risk data)
- Findings used to support and develop city policy
 - Clean Heat
 - Traffic Burden
 - 80x50 ongoing

Ongoing work

- Improving current and future year microscale inventories
 - Energy outlook in 2050
 - Distributed generation
 - Generators and other non-road equipment
- Street-level real-time PM_{2.5} monitoring
- Increased community based participatory research (citizen science) with low cost sensors

Public Reporting of Results

- Periodic public reports
- Scientific manuscripts
- Publically available data on web portal
- Online infographics
- Research datasets available by request

Thank you very much.

Air Team:

DOHMH: Iyad Kheirbek, Kazuhiko Ito, Sarah Johnson, Christopher Huskey **Queens College**: Holger Eisl, John Gorczynski, Anna Tilles, Steves Vanderpool, Jung Kim, Steven Markowitz

> For more information about NYCCAS, visit: http://www.nyc.gov/health/nyccas

To download air quality and other environmental health data visit: http://www.nyc.gov/health/tracking

