

DO NOT CITE OR QUOTE

NO_y Speciation at the Queens College Air Quality Measurement Site

Jim Schwab, Atmospheric Sciences Research Center, SUNY Albany

With contributions from:

Matt Ninneman, Brian Crandall; DEC colleagues inc. Mike Christopherson; Eric Edgerton and ARA; Charlie Blanchard; Stephanie Shaw

Basic Definitions

- NO_x Source Gases (air pollution precursors) byproduct of combustion activity
- $NO_x = NO + NO_2$
- These species play a **central role** in the ozone formation (air pollution) chemistry reactions
- NO_x is removed through chemical transformations that produce higher oxides of nitrogen, including nitric acid (HNO₃), nitrous acid (HONO), and organic nitrates (Alkyl Nitrates [ANs] and Peroxy Acetyl Nitrates [PANs])
- We can define the full set of oxides of nitrogen as NO_y

Definitions (cont.)

- $NO_y = NO + NO_2 + HNO_3 + HONO + ANs + PANs + others$
- We define just the higher oxides as NO_z

• $NO_z = NO_y - NO_x$

NO_z is also referred to as the products of NO_x oxidation

Definitions (conclusion)

- There is very important interplay between $\rm O_3$ and $\rm NO_x$ species, abbreviated as

$NO + O_3 \rightleftharpoons NO_2$

 O₃ and NO₂ are both regulated atmospheric oxidants, and in high NO_x environments they must be considered together as

$\bullet O_x = odd oxygen = O_3 + NO_2$

• This definition allows us to more correctly establish the oxidizing power of the atmosphere under conditions where NO_x and O_3 concentrations are both appreciable

Measurement Details

- No measurement is perfect.
- Ozone measurement is pretty reliable. (And very minor known problems do not affect this work.)
- NO_x and NO_y measurements are much more challenging.
- We have a very good, long-standing method for measuring NO (chemiluminescence or CL).
- We can also measure NO_y pretty reliably if proper care is taken.
- While Ron Cohen's groups and quite a few others have sensitive and highly selective instruments for measuring NO₂, *the instruments widely used in networks (and with EPA designations) are not selective for NO₂ (known since the 1980s!)*

Why is the EPA Method not selective for NO₂?

- Analyzers are based on the CL method for NO
- NO₂ must be converted to NO to be detected and measured.
- The commonly used, EPA designated method uses an NO₂ to NO converter that is not selective for NO₂!
- Illustrated on next slide

Non-Selective Conversion

INPUT

Air sample containing NO and NO₂, but also HNO₃, HONO, organic nitrates, etc. Heated (~325 °C) Molybdenum Reduction Converter

OUTPUT


Air sample containing NO (equal to the NOy at the input)

We define NO_2' , NO_x' (and NO_z') as the parameters measured using this method.

Does This Matter?

- The answer to this question depends on how you want to use the data, i.e., the purpose of the measurements themselves.
- NAAQS Compliance: This complication is probably not very important for ascertaining NAAQS compliance. (The NO₂ standard is 100 ppb, which means NO₂ – and NO_x – are quite high. This can only happen near significant sources of NO_x. NO_z is always significantly less than 100 ppb (or even 10 ppb), and NO_x makes up most of NO_y. In these situations the compliance NO₂ reported by the EPA CL Method is a good approximation to the true NO₂.)
- Understanding the NO_v Budget: Yes, it matters!
- Quantifying Ozone Production Efficiency (OPE): Yes, it matters!

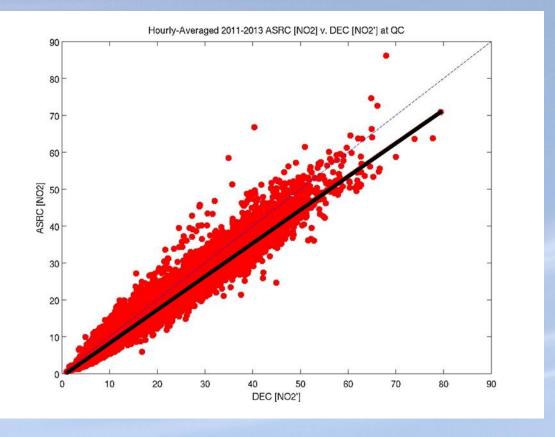
Measurement Location and Context

Observations of Speciated NO_y Components at QC

- Species specific NO₂ by ASRC from 2011 2013 using photolytic conversion
- In response to NCORE guidelines, DEC begins measurement of NO_y at QC in 2011
- ASRC joined with EPRI, ARA, and Envair to measure many "lesser" NO_z components at QC (and PSP) for a 15 month period in 2016-17.
- These species include HNO₃, particle nitrate (pNO₃), Alkyl Nitrates (ANs), and Peroxy Acetyl Nitrates (PANs)

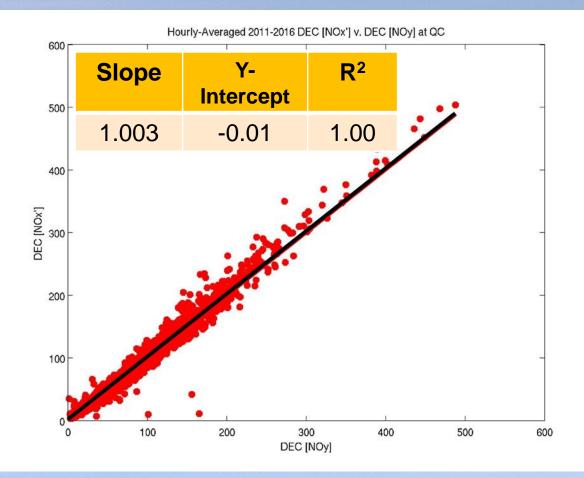
Species Selective Photolytic Conversion for NO₂

INPUT

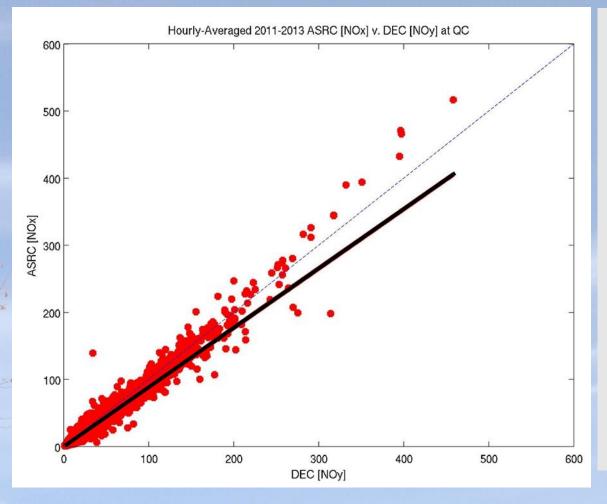

Air sample containing NO and NO₂, but also HNO₃, HONO, organic nitrates, etc. BLC Photolytic NO₂ Converter – Narrow band light at 395 nm

 $\frac{NO_2 + h\gamma}{NO + O} \rightarrow$

Air sample containing the original NO and NO from the NO₂ photodissociation, as well as HONO, organic nitrates, etc.


OUTPUT

Photolytic NO₂ versus NO₂'


- Measurements are highly correlated.
 - Slope of fit line
 (intercept set to 0)
 is 0.89, with an R²
 of 0.96.
 - We infer that the DEC NO₂' measurement must include things like ANs and PANs

DEC NO_x' versus NO_y (2011-16)

- No discernable difference!
- Further evidence of AN and PAN inclusion in the NO_x' measurement

ASRC NO_x versus NO_y (2011-13)

- Same story from a slightly different angle.
- Highly correlated (R² = 0.97)
- Slope of 0.88 (intercept set to zero), implies NO + NO₂ make up ~88% of NO_v
- (Note that many high concentration points even closer to 1:1.)
 - Further implication is that $\sim 12\%$ of NO_y is made up of NO_z species

EPRI/ASRC/ARA/Envair Project

- Four CL NO detection systems, three measuring oxidized nitrogen species
- One system measures NO_v and HNO₃
- One measures pNO₃ (and pNH₄)
- One measures ANs and PANs using thermal dissociation and NO₂ photolytic detection
- While ARA has worked to "routinize" these methods, these are not easy measurements! A lot of work is required to tease out the full accounting for this level of detail.

First Results – NO_v Speciation at QC

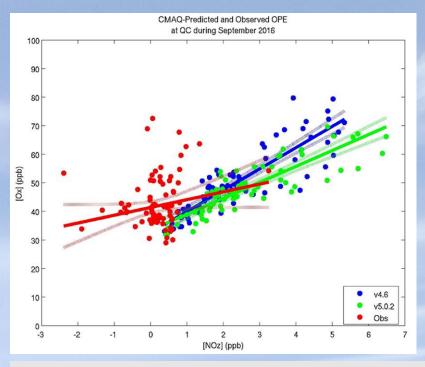
Nitrogen Budget Analysis at QC during Sept. 2016 (All Hours)	Species	Average % of Total NO _y	Average Concentration (ppb, All Hours)
120	NO	9.8	1.8
00 NO	NO ₂	63.9	7.9
5 60	HNO ₃	4.3	0.6
ස් සංකා 40	pNO ₃	1.7	0.2
BB 40 AB 20	PANs	12.9	1.4
0	ANs	8.1	0.8
■ NO ■ NO2 ■ HNO3 ■ pNO3 ■ PANs ■ ANs	∑NO _{yi}	100.7	12.7

First results for September 2016 – the first month all four systems (ARA + ASRC) operational. Much more to come!

NYC Energy and Air Quality Workshop, May 24, 2017

Implications for Ozone Production

- Please see Matt Ninneman's poster later today for the full story.
- Ozone Production Efficiency (OPE) is defined as the number of ozone molecules produced in the VOC-NO_x reaction system until the NO_x molecules are removed (deactivated)
- Empirically this is written as

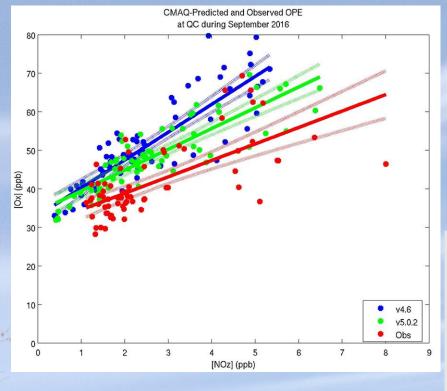

$OPE = \Delta O_x / \Delta NO_z$

• That is, forming NO_z species interrupts the chain reaction producing ozone.

Observed and Model Derived OPEs

- OPEs are the slopes of the plots of odd oxygen (think ozone) vs. NO_z
- Many ways to determine NO_z observationally, but all require at least two analyzers!
- Method 1: $NO_z' = NO_y NO_x'$ (DEC data)
- Method 2: NO_z ≈ HNO₃ + pNO₃ + ANs + PANs (ARA data – August & September only)
- Method 3: $NO_z = NO_y NO_x$ (photolytic $NO_x September only)$
- Model OPEs are straightforward

QC OPE Analysis Results – Observations and Model Output Method 1 (Sept. 2016):


Month	Data Type	OPE	Y- Intercept	R ²
September	v4.6	7.44	32.53	0.78
	v5.0.2	5.57	33.46	0.73
	OBS	2.73	41.39	0.06

V4.6 and v5.0.2 are CMAQ model versions

The observed NO_z ' data using this method are obviously a problem – note the many negative values and very low R^2 !

QC OPE Analysis Results

Method 2 (Sept. 2016):

Month	Data Type	OPE	Y- Intercept	R ²
September	V4.6	7.23	33.03	0.75
	V5.0.2	5.39	34.11	0.72
	OBS	4.27	30.32	0.48

- Correlation using observed data much better (if not great).
- OPE agreement with models is decent as well.

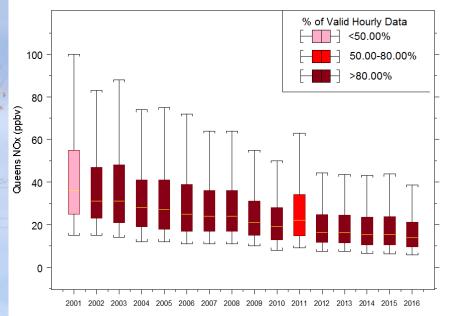
Method 3 produces a higher R² (0.66) and OPE (7.28).

Conclusions

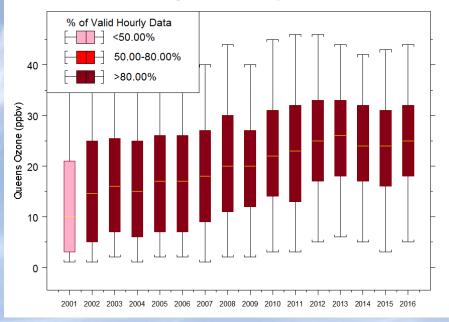
- 1. Commonly used NO₂ measurement methods using Mo converter and CL are flawed (Known for decades, but we have pointed out why this is important.)
- Routine speciated measurements of NO_y components into chemically related groups is feasible (but demanding)
- 3. These speciated measurements are necessary to better reflect atmospheric reactivity and ozone production chemistry

jschwab at albany.edu Thanks to NYSERDA (CNs 48971 and 59807) and EPRI (10004919) for support.

NYC Energy and Air Quality Work May 24, 2017

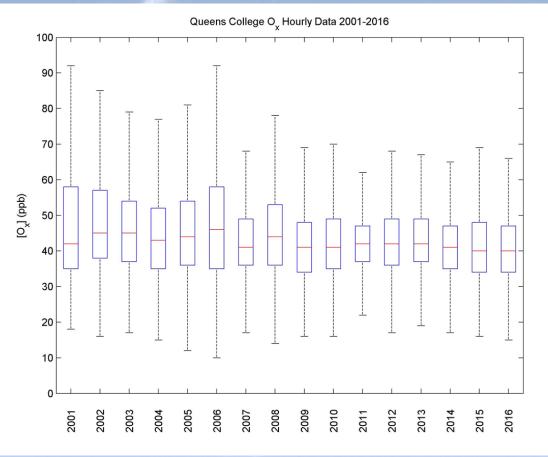

Back Up Slides

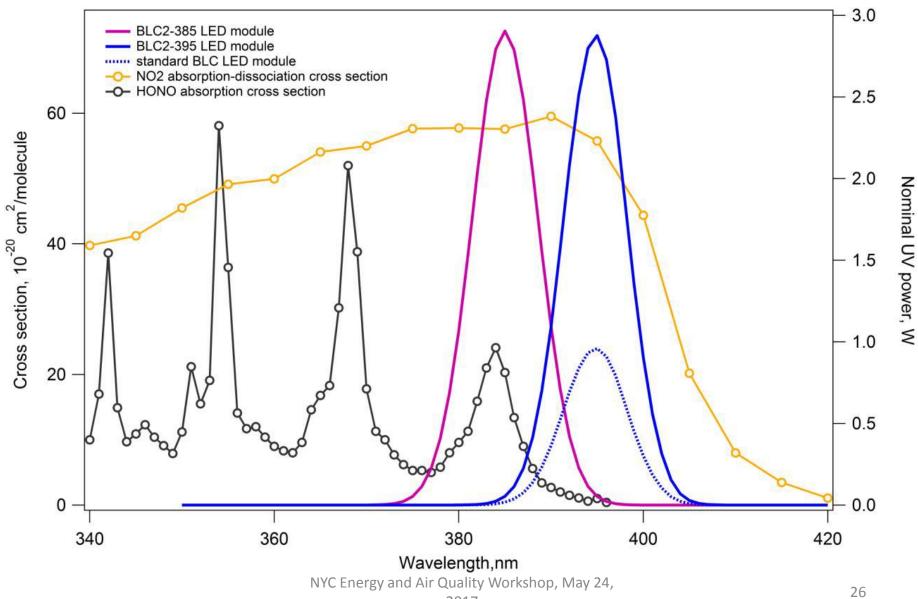
NYC Energy and Air Quality Workshop, May 24, 2017


NO_x' and Ozone Trends

 NO_x ' levels (mostly NO_2) have come down since 2001 from ~ 32 ppbv to ~ 15 ppbv

Queens College NOx Hourly Data 2001-2016

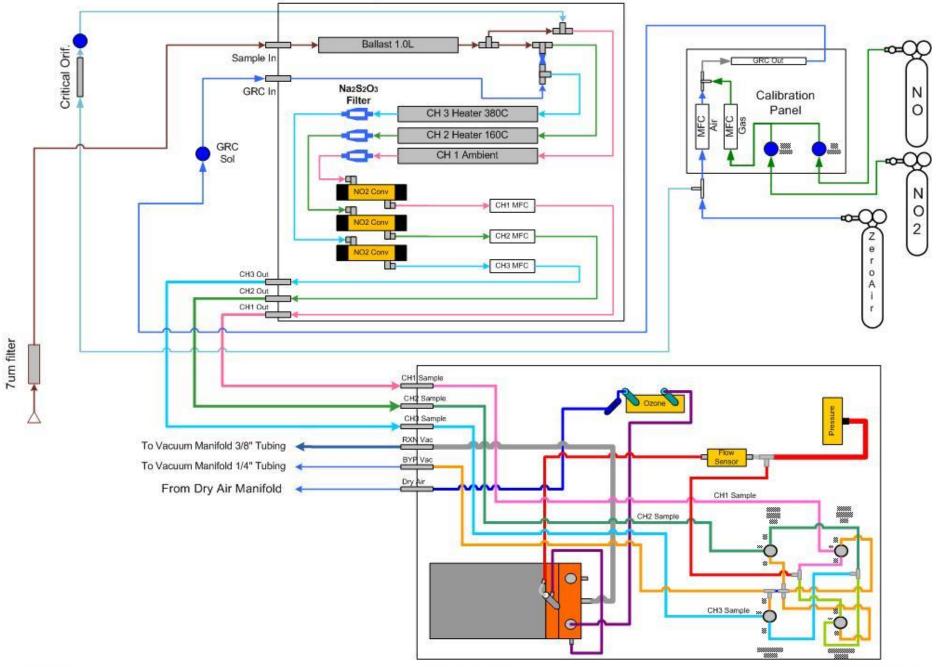

Queens College Ozone Hourly Data 2001-2016



Over the same period, annual median ozone has **increased** from less than 15 ppbv to near 25 ppbv

The oxidant level is best described by odd oxygen

Recall that O_{y} is the sum of O_3 and NO₂' -This parameter combines the two trends from the previous slide and shows, if anything, a slight decrease.



TON Analyzer for Peroxyacetylnitrates (PANs) and Alkylnitrates (ANs)

- Continuous 3-Channel Thermal-Photolytic Difference
- CH1 (baseline) measures NOx
- CH2 (160°C thermo-converter) measures NOx + NO₂ produced from PANs
- CH3 (380°C converter) measures NOx + NO₂ produced from PANs and ANs
- Assumes PANs and ANs are only compounds to produce NO₂ at 160°C and 380°C AND that back reactions (recombination of NO₂ + RO[.] or RO₂[.]) are negligible

TON System Overview Rev 1

