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Observation orbits:

LEO (low Earth orbit) and GEO (geostationary)

LEO GEO

500-1000 km alitude
Global observation (for polar orbit)
Revisit time: 1 day to weeks

36,000 km altitude
Regional-continental observation
Revisit time: hours

All air quality observations so far 

are from polar sun-synchronous LEO 

Geostationary constellation 

to be launched in 2020-2022:

TEMPO over N. America,

GEMS over E. Asia, 

Sentinel-4 over Europe



Observing air pollution from space: solar backscatter instruments

UV: SO2, formaldehyde, ozone, BrO 

Blue: NO2, glyoxal

Visible: Aerosol

Orange: ozone 

Shortwave IR (SWIR): CO, methane, CO2

Sensitivity
0                                1

5 km

10 km

UV

blue o
ra

n
g
e
, 

S
W

IR

Gases: OMI, GOME-2, OMPS, MOPITT, GOSAT, OCO-2, TROPOMI, TEMPO

Aerosol: MODIS, MISR, VIIRS
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Observing air pollution from space: thermal emission instruments

Thermal IR (TIR): CO, ozone, ammonia, methane

Sensitivity0                        1
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Total column

MOPITT, TES, AIRS, IASI, CrIS

blackbody emission



Observing air pollution from space: lidar instruments

Visible: Aerosol

SWIR: methane

CALIOP (aerosol), MERLIN (methane)

Vertical profiles



OMI NO2, summer 2005

Satellite observations of tropospheric NO2 columns

as top-down estimates of NOx emissions

Russell et al. , ACP 2012



OMI NO2, summer 2005OMI NO2, summer 2011

Russell et al., ACP 2012

30% decrease in NOx emissions from 2005 to 2011

OMI observations of tropospheric NO2 columns

show fast decrease of US NOx emissions, 2005-2011



US NOx emissions have continued to decrease since 2011 according to EPA…

but OMI tropospheric NO2 column observations suggest otherwise!

OMI NO2 columns over CONUS, 2005-2016:

flat after 2011

EPA National Emission Inventory (NEI):

53% sustained decrease of NOx emissions 

over 2005-2017
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Jiang et al., PNAS 2018
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OMI annual NO2 trends over CONUS, 2005-2017

Silvern et al., ACPD 2019



Hypothesis #1: 

EPA NOx emission trends are wrong

Mobile sources in EPA inventory are too high, so maybe trends are wrong as well?

Travis et al., ACP 2016

Observed

GEOS-Chem model 

with EPA NOx emissions

with EPA NOx emissions/2

NASA SEAC4RS aircraft campaign, Aug Sep 2013

Circles: 

NADP observations

Contours: 

GEOS-Chem with EPA emissions/2

nitrate wet deposition fluxes, Aug-Sep 2013



Hypothesis #2: 

US NOx emissions are now so low that OMI mostly sees background

Mean SEAC4RS NO2 profile over Southeast US

NOAA (Ryerson)                

Berkeley (Cohen)

GEOS-Chem
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OMI NO2 sensitivity vs. altitude

Boundary layer below 2 km accounts for only 20-35% of tropospheric NO2 column 

as seen by OMI

Travis et al. , ACP 2016; Silvern et al., GRL 2018



Use GEOS-Chem model to interpret trends from different data sets

2005-2017 GEOS-Chem simulation
0.5ox0.625o (50 km) resolution

GEOS-Chem NOx emissions 

(Tg N a-1)

EPA – 40%          

NO2 column,

1015 cm-2

NO2 column % change

relative to 2005

OMI (NASA retrieval)                    

GEOS-Chem

GEOS-Chem driven by EPA emission trend does 

not reproduce flat OMI trend after 2011

Silvern et al., ACPD 2019



2005-2017 trends in surface data

GEOS-Chem matches the observed relative trends:

- surface NO2 is most sensitive to anthropogenic emissions

- nitrate deposition is sensitive to background (soils, lightning, transport from outside US)

US anthropogenic sources contribute only 50% of nitrate wet deposition in 2005, 31% in 2017

AQS NO2

(urban)   

SEARCH NO2

(2 rural sites)

NADP nitrate

wet deposition

Silvern et al., ACPD 2019

Observed

GEOS-Chem



Comparing 2005-2017 relative trends for different US quantities

We deduce that:

- EPA 2005-2017 trend in NOx emissions is correct

- OMI NO2 columns have strong background influence

- GEOS-Chem underestimates free tropospheric background NO2
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Nitrate wet deposition

OMI NO2 column

SEARCH NO2

AQS NO2

EPA emissions

Silvern et al., ACPD 2019



Separating OMI trends by urban vs. rural, winter vs. summer

Trends in NO2 columns relative to 2005 (%)

OMI shows:

- steady decrease in urban winter where background is relatively low

- no trend in rural summer where background is relatively high

urban winter

Silvern et al., ACPD 2019

rural summer

OMI NO2 is useful to detect hotspots and plumes,

but inference of regional emissions is far more uncertain



Observing ammonia from space (IASI)

Surface

ammonia

ammonium

aerosol

PBL depth

How much 

ammonia in free 

troposphere ?

Increasing

sensitivity

with altitude

Van Damme et al., Nature 2018

IASI/CrIS ammonia is useful to detect hotspots and plumes,

but inference of regional emissions is far more uncertain



Formaldehyde over US: tracer of reactive VOC emissions, mainly isoprene

OMI formaldehyde columns, JJA 2005-2016

formaldehyde

photolysis

oxidationoxidation
isoprene

1 h 2 h

Zhu et al., ES&T 2017

http://iconbazaar.com/bars/contributed/pg04.html


Inferring formaldehyde surface concentrations and cancer risks from OMI data

Annual mean OMI-derived surface formaldehyde, 2005-2016

6000-12000 people in US to develop cancer over their lifetimes from HCHO exposure

Zhu et al., ES&T 2017

Circles:

EPA sites



OMI trends in formaldehyde columns, 2005-2009 to 2010-2014

Zhu et al., GRL 2017

-20%                                     +20%

Houston
Floyd Shale

Oil sands

Corn 

silage?



OMI detects surface ozone over China…but only because it’s so highJJA 2013-2017 ozone over China from the MEE network and the OMI instrument 

JJA 2013-2017 ozone over China from the MEE network and the OMI instrument JJA 2013-2017 ozone over China from the MEE network and the OMI instrument 

Mean 2013-2017 Jun-Aug 12-3pm ozone

CNEMC

surface network

OMI

enhancement

OMI sensitivity 

(Hong Kong)

Daily correlation, 

OMI vs. CNEMC

Shen et al., ACPD 2019

OMI UV retrieval



US surface ozone is too low for OMI…but TEMPO could help
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TEMPO will have a visible channel

for ozone observations
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Ozone absorption spectrum

Chappuis bands

(weak!)

Don’t count on TEMPO for ozone monitoring – but it should be very useful for

- recognizing exceptional events (such as stratosphere intrusion)

- observing long-range transport

- chemical data assimilation

- initializing air quality forecasts



Methane: mean GOSAT observations, 2010-2015

1.2 million observations 

10 km pixels

250 km apart

(3 cross-track)

Emissions can be inferred from the data by inversion of an atmospheric transport model

N. America window

Maasakkers et al., ACPD 2019



EPA inventory distributed on 0.1ox0.1o grid with scale-dependent error characterization

Maasakkers et al. , ES&T 2016

2012
EPA

Spatially resolved version of EPA US methane inventory

Use as prior estimate for the inversion



High-resolution inversion for North America

Correction factors from the inversion

• WetCHARTS emission  from US 

coastal wetlands are too high

• US EPA inventory has 20% low bias 

for oil/gas (mainly oil production), 

• no bias for other sources

US EPA emissions + WetCHARTS wetlands

DOFS=66

Maasakkers et al., in prep.



GOSAT-inferred North American emission trends, 2010-2015

EIA [2018]

DOFS=3

Increasing emissions from fracking in Midwest

Maasakkers et al., in prep.



TROPOMI instrument launched in October 2017:
Global daily mapping of NO2, formaldehyde, ozone, SO2, CO, methane

for 3.5x7 km2 or 7x7 km2 nadir pixels 

January-February 2017

Yuzhong Zhang,

Harvard

July-August 2018
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TROPOMI instrument launched in October 2017:
Global daily mapping of NO2, formaldehyde, ozone, SO2, CO, methane

for 3.5x7 km2 or 7x7 km2 nadir pixels 

July-August 2018

Yuzhong Zhang,

Harvard

Maasakkers et al. (2016)

gtidded EPA inventory



TROPOMI instrument launched in October 2017:
Global daily mapping of NO2, formaldehyde, ozone, SO2, CO, methane

for 3.5x7 km2 or 7x7 km2 nadir pixels 

January-February 2019

Yuzhong Zhang,

Harvard



What to expect from TEMPO?

Instrument is built and in storage

Waiting for ride in 2020-2022

Geostationary orbit, 2x5 km2 pixels over N. America, 

hourly frequency

Spectral bands: 290-490 + 540-740 nm

Species: ozone (including 2-level vertical profile), NO2, formaldehyde, SO2
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Using OMI to infer long-term trends of surface ozone in China

Shen et al., ACPD 2018

Symbols:

long-term stations



Satellites have transformed Earth Science from data-poor 

to data-rich over past 30 years



Why observe air pollution from space?

Column Ω [kg m-2]

Surface concentration [kg m-3]

Emission [kg m-2 s-1]

Transport

• Map surface concentrations (data assimilation)

• Infer emissions (inversion)

• Identify hotspots

• Monitor trends

• Inform air pollution meteorology: long-range transport, mixing depths…


