Satellite observations for air quality

Daniel J. Jacob

with Rachel F. Silvern, Lei Zhu, Lu Shen, Joannes D. Maasakkers, Yuzhong Zhang

Observation orbits: LEO (low Earth orbit) and GEO (geostationary)

500-1000 km alitude Global observation (for polar orbit) Revisit time: 1 day to weeks

All air quality observations so far are from polar sun-synchronous LEO

36,000 km altitude Regional-continental observation Revisit time: hours

Geostationary constellation to be launched in 2020-2022: TEMPO over N. America, GEMS over E. Asia, Sentinel-4 over Europe

Observing air pollution from space: solar backscatter instruments

UV: SO₂, formaldehyde, ozone, BrO Blue: NO₂, glyoxal Visible: Aerosol Orange: ozone Shortwave IR (SWIR): CO, methane, CO₂

Gases: OMI, GOME-2, OMPS, MOPITT, GOSAT, OCO-2, TROPOMI, TEMPO Aerosol: MODIS, MISR, VIIRS Observing air pollution from space: thermal emission instruments

MOPITT, TES, AIRS, IASI, CrIS

Observing air pollution from space: lidar instruments

Visible: Aerosol SWIR: methane

CALIOP (aerosol), MERLIN (methane)

Satellite observations of tropospheric NO₂ columns as top-down estimates of NO_x emissions

Russell et al. , ACP 2012

30% decrease in NO_x emissions from 2005 to 2011

Russell et al., ACP 2012

US NO_x emissions have continued to decrease since 2011 according to EPA... but OMI tropospheric NO₂ column observations suggest otherwise!

EPA National Emission Inventory (NEI): 53% sustained decrease of NO_x emissions over 2005-2017 *EPA*, 2018

OMI NO₂ columns over CONUS, 2005-2016: flat after 2011

Jiang et al., PNAS 2018

OMI annual NO₂ trends over CONUS, 2005-2017

Silvern et al., ACPD 2019

Hypothesis #1: EPA NO_x emission trends are wrong

Mobile sources in EPA inventory are too high, so maybe trends are wrong as well?

NASA SEAC⁴RS aircraft campaign, Aug Sep 2013

Hypothesis #2:

US NO_x emissions are now so low that OMI mostly sees background

Boundary layer below 2 km accounts for only 20-35% of tropospheric NO₂ column as seen by OMI

Travis et al., ACP 2016; Silvern et al., GRL 2018

Use GEOS-Chem model to interpret trends from different data sets

Silvern et al., ACPD 2019

2005-2017 trends in surface data

GEOS-Chem matches the observed relative trends:

- surface NO₂ is most sensitive to anthropogenic emissions
- nitrate deposition is sensitive to background (soils, lightning, transport from outside US) US anthropogenic sources contribute only 50% of nitrate wet deposition in 2005, 31% in 2017

AQS

SEARCH NADP

Comparing 2005-2017 relative trends for different US quantities

We deduce that:

- EPA 2005-2017 trend in NO_x emissions is correct
- OMI NO2 columns have strong background influence
- GEOS-Chem underestimates free tropospheric background NO₂

Separating OMI trends by urban vs. rural, winter vs. summer Trends in NO₂ columns relative to 2005 (%)

OMI shows:

- steady decrease in urban winter where background is relatively low
- no trend in rural summer where background is relatively high

OMI NO₂ is useful to detect hotspots and plumes, but inference of regional emissions is far more uncertain

Silvern et al., ACPD 2019

Observing ammonia from space (IASI)

Increasing sensitivity with altitude

How much ammonia in free troposphere ?

IASI/CrIS ammonia is useful to detect hotspots and plumes, but inference of regional emissions is far more uncertain

Van Damme et al., Nature 2018

Formaldehyde over US: tracer of reactive VOC emissions, mainly isoprene

OMI formaldehyde columns, JJA 2005-2016

Zhu et al., ES&T 2017

Inferring formaldehyde surface concentrations and cancer risks from OMI data

Annual mean OMI-derived surface formaldehvde. 2005-2016

6000-12000 people in US to develop cancer over their lifetimes from HCHO exposure

Zhu et al., ES&T 2017

OMI trends in formaldehyde columns, 2005-2009 to 2010-2014

Zhu et al., GRL 2017

OMI detects surface ozone over China...but only because it's so high

Shen et al., ACPD 2019

US surface ozone is too low for OMI...but TEMPO could help

Don't count on TEMPO for ozone monitoring – but it should be very useful for

- recognizing exceptional events (such as stratosphere intrusion)
- observing long-range transport
- chemical data assimilation
- initializing air quality forecasts

Methane: mean GOSAT observations, 2010-2015

Emissions can be inferred from the data by inversion of an atmospheric transport model

Maasakkers et al., ACPD 2019

Spatially resolved version of EPA US methane inventory

EPA inventory distributed on 0.1°x0.1° grid with scale-dependent error characterization

Use as prior estimate for the inversion

Maasakkers et al., ES&T 2016

High-resolution inversion for North America

US EPA emissions + WetCHARTS wetlands

Correction factors from the inversion

Maasakkers et al., in prep.

GOSAT-inferred North American emission trends, 2010-2015

Increasing emissions from fracking in Midwest

Maasakkers et al., in prep.

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for 3.5x7 km² or 7x7 km² nadir pixels

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for $3.5x7 \text{ km}^2$ or $7x7 \text{ km}^2$ nadir pixels

$NO_2 (x10^{-6} \text{ mol m}^{-2})$

January-February 2019

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for 3.5x7 km² or 7x7 km² nadir pixels

3.2

3.1

3.3

3.4

3.5

Yuzhong Zhang, Harvard

3.6

3.7

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for 3.5x7 km² or 7x7 km² nadir pixels

$$CO(x10^{-2} \text{ mol m}^{-2})$$

January-February 2019

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for $3.5x7 \text{ km}^2$ or $7x7 \text{ km}^2$ nadir pixels

CH₄ (ppbv)

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for $3.5x7 \text{ km}^2$ or $7x7 \text{ km}^2$ nadir pixels

CH₄ (ppbv)

1800

1820

1840

1860

Yuzhong Zhang, Harvard

1880

Global daily mapping of NO₂, formaldehyde, ozone, SO₂, CO, methane for $3.5x7 \text{ km}^2$ or $7x7 \text{ km}^2$ nadir pixels

CH₄ (ppbv)

Yuzhong Zhang, Harvard

What to expect from TEMPO?

Instrument is built and in storage Waiting for ride in 2020-2022

Geostationary orbit, 2x5 km² pixels over N. America, hourly frequency

Spectral bands: 290-490 + 540-740 nm Species: ozone (including 2-level vertical profile), NO₂, formaldehyde, SO₂

Using OMI to infer long-term trends of surface ozone in China

Changes in summertime surface ozone pollution inferred from OMI (2005-2009 to 2013-2017)

Shen et al., ACPD 2018

Satellites have transformed Earth Science from data-poor to data-rich over past 30 years

The COMET Program / EUMETSAT / NASA / NOAA / WMO

Why observe air pollution from space?

- Map surface concentrations (data assimilation)
- Infer emissions (inversion)
- Identify hotspots
- Monitor trends
- Inform air pollution meteorology: long-range transport, mixing depths...