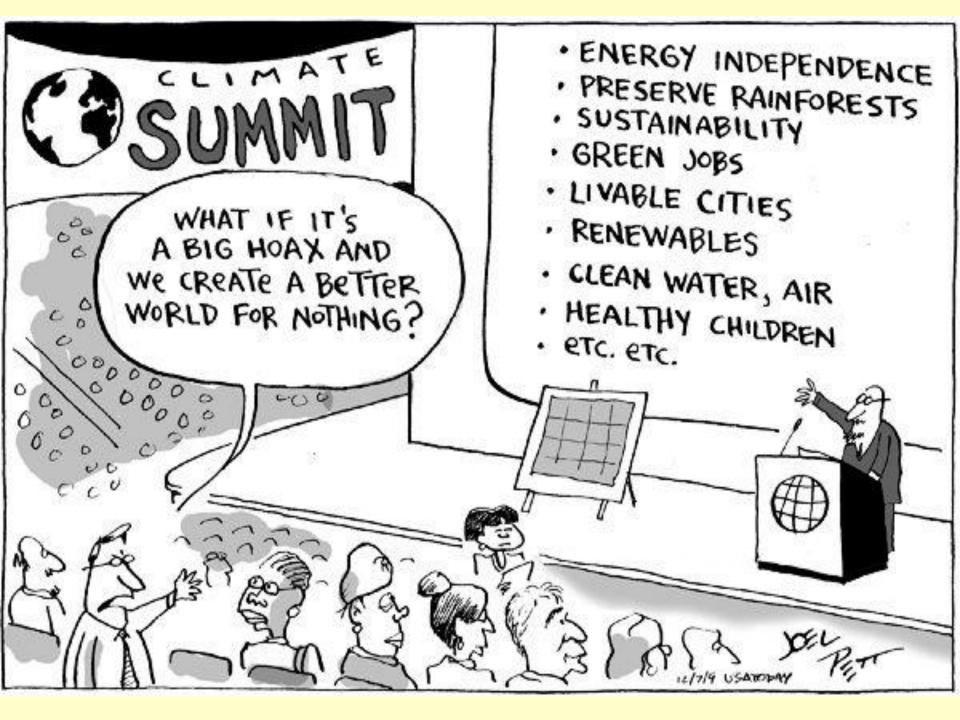


Center for Sustainable Enterprise and Regional Competitiveness


David L. Levy
University of Massachusetts, Boston
david.levy@umb.edu

Business and Climate Change: Threats and Opportunities in the Transition to a Clean Economy

MIT-NESCAUM Symposium

Endicott House, Dedham 8.16.2011

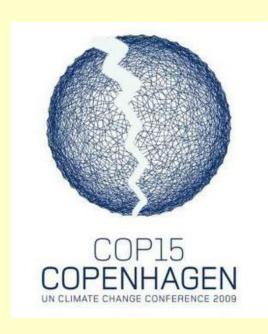
There's NO Business like CO₂ Business

Investment to reach 450 ppm, 2°goal estimated at \$600-800 billion/year worldwide, 80-90% from private sources

Global carbon market: \$143 bn 2009, 8.7 bn tonnes C02e

Clean tech 23% of US VC funding, \$5 bn. 2010

Global investment in clean energy \$243 bn, 2010, up 30%


A123 Systems Raised \$378 million Sep. 2009

Zipcar raised \$174 million April 2011

From *Hopenhagen* to *Brokenhagen*?

- Climategate Nov. 2009
- Collapse of Copenhagen climate negs. Dec. 2009
- Nov. 2010 Republican victory, tea-party politics
- Deficits, austerity, unemployment and budget cuts
- End of US Cap & Trade?
- -- Action at local levels?
- Cheap natural gas, carbon price < \$20/tCO2e
- Defections from USCAP BP, Caterpillar

Multinational Corporations as Critical Players

Overt political strategies:

Trade Assocs., Lobbying, Campaign donations, Govt. agency links

Discursive Politics:

Engaging in public debates, advertising and media

Market/Technological strategies:

roles as investors, project developers, polluters, innovators, experts, producers, lobbyists, marketers, employers, & price setters

Private market based governance – private decisions (routine and strategic) structure economic activity and social world

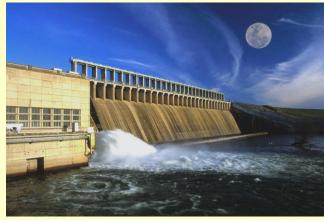
Climate Change/Clean-tech: Most Important Strategic Issue Facing Business in 21st Century

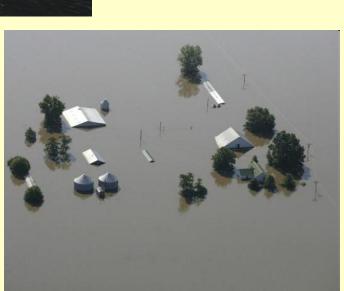
- 1. Direct cost impact: cost of fuels and power, allowances
- 2. Physical Risks: Insurance, Agriculture, Real Estate, Infrastructure
- 3. Strategic impact: new technologies, competitors, markets, competencies
- 3. Carbon mgt and cost control: compliance, fuel switching, efficiency, process improvements, logistics, facilities mgt.
- 4. Corporate Branding and Product Differentiation: at corporate, facility, product levels
- 5. Demand impacts: e.g. fuels, lighting; cleantech; software, smart-grid
- 6. Financial: Carbon trading, Green ETFs, Carbon risk/premium

Physical Risks:

Water Scarcity

Impact on:

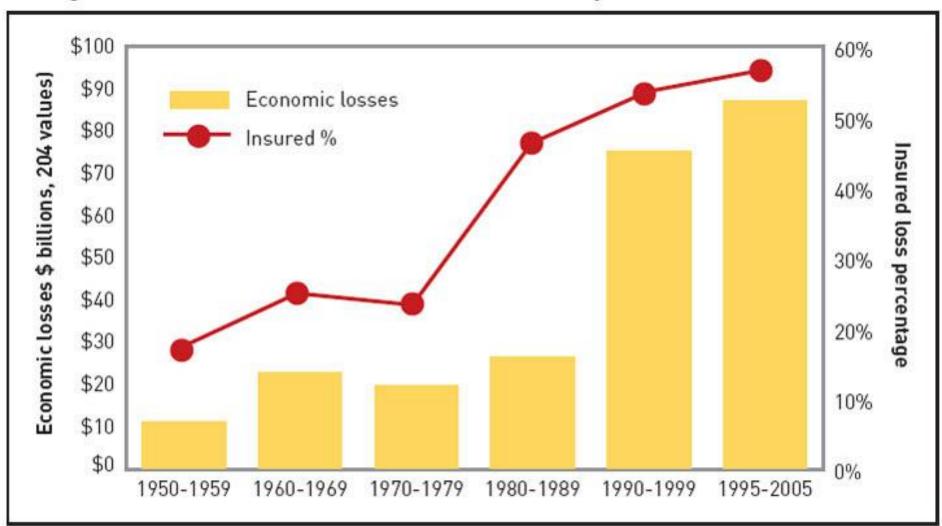

Agriculture


Industry

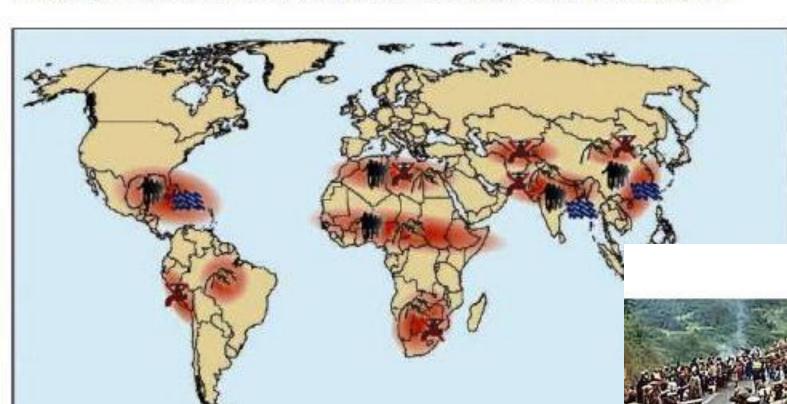
Health

Power production

Transportation



Insurance Costs:

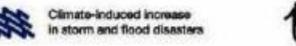

Rising U.S. economic and insured losses from tropical storms and hurricanes

Source: American Re (2005)

Security Risks: Refugees, Resources

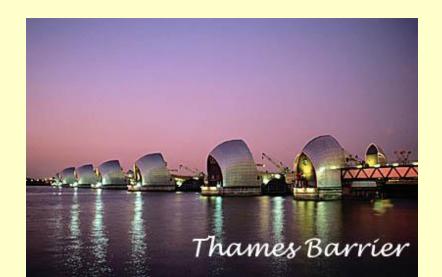
Security risks associated with climate change: Selected hotspots

The map only shows the regions which are



Climate-induced degradation of freshwater resources

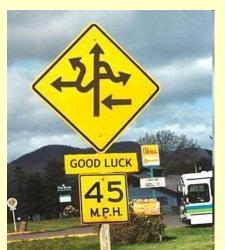
Climate-induced decline in food production



Environmentally-induced migration

Economic Costs

- Real estate and tourism
- Obsolescence
- Health malaria, malnutrition
- Technological and financial risk
- -- Large Scale Mitigation Projects



Strategic Dilemmas for Business

- First mover advantages vs. risks of early investment
- High uncertainty re science, policy, technologies, markets
- Risks of new products and markets
- Reputational impact
- Seat at policy table, political positioning
- Hedging strategies
- Risk of policy fragmentation
- Risk of major climate crisis, war-time mobilization



Inertia in sub-system causes instability: Fossil-Fuel Energy System

Economic/Material: Technologies 'perform', infrastructure lock-in, dominant firms with BTEs, econs. of scale, core capabilities

Organizational/Political: Industry assocs, govt agencies, subsidies, policy influence, 'highway coalition'

Normative-cultural: private consumption/mobility, status; routines, standard practices, norms and values

Transition to Low-Emission Energy System?

Inertia of existing system:

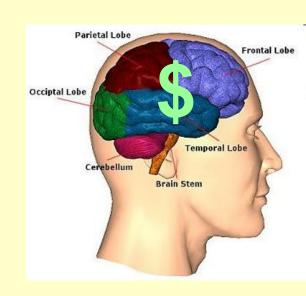
Renewable technologies do not perform

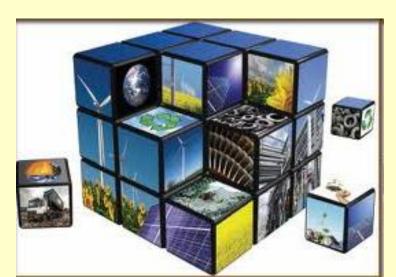
VC capital avoids extreme risks

Business models for renewables uncertain

Political power of renewable companies weak

Difficulty of shifting norms, standards, attitudes, practices





Corporate Clean Energy Strategies

depends on *expectations* regarding:

- Carbon, energy prices
- Regulation
- Consumer response
- Technological developments
- Competitor moves
- Climate defined as 'crisis'
- Public pressure

Trans-Atlantic Differences in technology-political strategies

US Companies (Oil, Autos, Utilities, till ~ 2000)

Political: opposition to mandatory emission controls

- Emphasize high costs and uncertainty

Technological: - radical, showcase long-term investments

- incremental extension of existing technologies

European Companies:

Political: - accept science, negotiate, accommodate

- 140 g/km ACEA-EU agreement

Technological: investments in range of low-emission technologies

Market Context: Global Oil

- Firms face similar markets, resources, competencies
- → expect similar strategies **BUT** different political, market, cultural contexts

US firms:

- history of clean energy losses
- believe the Porter strategy story
- assume can stop regulation
- pessimistic regarding consumer change
- see world through US-centric lens

Euro firms:

- see regulation as inevitable
- optimistic that consumers adapt
- believe they can develop new competencies
- more international orientation

Trans-Atlantic Convergence 1999 to 2010

- participation in global industry, issue-level orgs.
- reactions to competitors
- firms develop global climate strategy teams
- formulate common political stance
- develop common outlook on markets
- diffusion of 'win-win' eco-modernist ideology
- collapse of GCC, rise of Pew
- strategic failures e.g. challenging climate science

Toward a Climate Compromise?

'Learn how being green can increase brand value and company profits' Corporate Climate Response, 2007

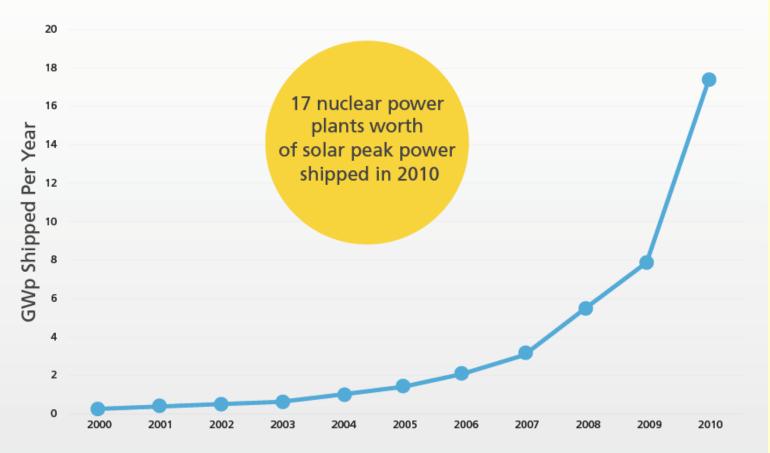
- growth of clean energy economy
- carbon trading provides flexibility
- protects core business interests
- corp strategies consistent with weak, fragmented regime
- policymakers driven by 'competitiveness'
- flexible implementation, Enron style accounting?
- marginalizes more radical challenges to consumerism, business autonomy

Explosive Clean Tech Growth in Last Decade

Ten Years in Clean Tech: At a Glance

	2000	2010
Combined Global Market for Solar PV and Wind	\$6.5 billion	\$131.6 billion
Average Cost to Install a Solar PV System (Per Peak Watt)	\$9	\$4.82
Number of Hybrid Electric Vehicles on the Road in U.S.	Less than 10,000	More than 1.4 million
Number of Hybrid Electric Vehicle Models Available Globally	2	30
LEED-Certified Commercial Green Buildings in the World	3	8,138
Number of U.S. States with RPS	4	29
Percentage of Total U.S. Venture Capital Invested in Clean Tech	Less than 1%	More than 23%

Global Clean-Energy Market Size 2000-2010


Year	Solar PV Global Market Size (in \$Billions)	Wind Power Global Market Size (in \$Billions)	Biofuels Global Market Size (in \$Billions)
2000	\$2.5	\$4.0	N/A
2001	\$3.0	\$4.6	N/A
2002	\$3.5	\$5.5	N/A
2003	\$4.7	\$7.5	N/A
2004	\$7.2	\$8.0	N/A
2005	\$11.2	\$11.8	\$15.7
2006	\$15.6	\$17.9	\$20.5
2007	\$20.3	\$30.1	\$25.4
2008	\$29.6	\$51.4	\$34.8
2009	\$36.1	\$63.5	\$44.9
2010	\$71.2	\$60.5	\$56.4

Moderating Growth in Next Decade

Global Clean-Energy Projected Growth 2010-2020 (\$US Billions)

Solar Growing Rapidly, Averaging 65% Compound Annual Growth Rate for the Past 5 Years

Clean Energy Business Models

- Value of storage, large grid networks, dispatchable and predictable power

- Monetizing ancillary benefits – grid congestion, cost of peak

power, waste disposal

Venture Capital:

Seeds of growth, US Advantage

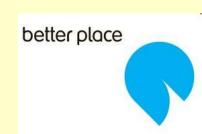
Clean-Tech Venture Capital Investments in U.S.-Based Companies as Percent of Total 2001-2010

Year	Total Venture Investments (\$Millions)	Clean-Tech Venture Investments (\$Millions)	Clean-Tech Percentage of Venture Total
2001	\$37,624	\$458	1.2%
2002	\$20,737	\$651	3.1%
2003	\$18,789	\$807	4.3%
2004	\$21,699	\$760	3.5%
2005	\$22,535	\$1,158	5.1%
2006	\$26,010	\$2,685	10.3%
2007	\$29,901	\$3,761	12.6%
2008	\$28,105	\$6,120	21.8%
2009	\$18,276	\$3,553	19.4%
2010	\$21,823	\$5,055	23.2%

Source: Cleantech Group, 2011, with Clean Edge analysis. Clean-tech venture investment includes seed funding and follow-on rounds prior to private equity activity related to stake acquisitions or buyouts. Investment categories include agriculture, air & environment, energy efficiency, energy generation, energy infrastructure, energy storage, materials, manufacturing/industrial, recycling & waste, transportation, and water & wastewater.

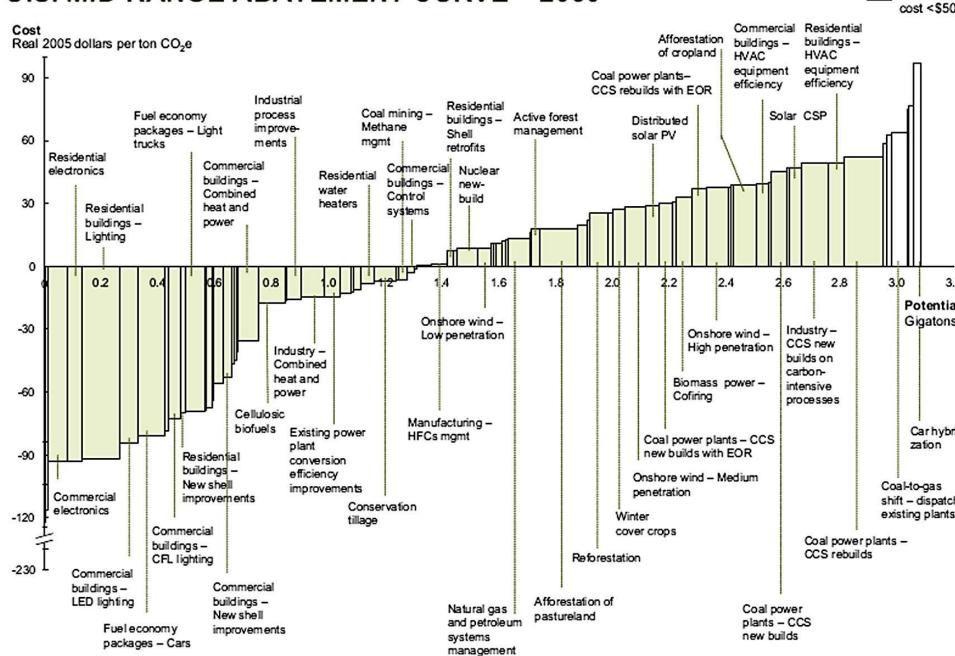
What's Hot, and What's Not?

- energy efficiency, measurement and management
- smart-grid, storage, power electronics, sensors



- high efficiency lighting
- NOT: scale mfg. of solar, batteries

New business models:


- multiple, short-term sources of value
 - convenience, savings, reputation, risk mgt.
- software, integrated services
- legal, professional, financial services

U.S. MID-RANGE ABATEMENT CURVE – 2030

Abatemer

Source: McKinsey analysis

Barriers to low-carbon solutions

- 1. Upfront investment costs
- 2. Lack of knowledge/incentives/inertia
- 3. Uncertainty/measurement problems re benefits
- 4. Fragmented markets
- 5. Hidden costs installation, transaction costs, monopolies
- 6. Split incentives owner/bill payer, owner moving
- 7. Carbon lock-in: systemic solutions needed
- 8. Elevated hurdle rates (excessive ROI required)

Energy Efficiency

McKinsey 2009 Study of US:

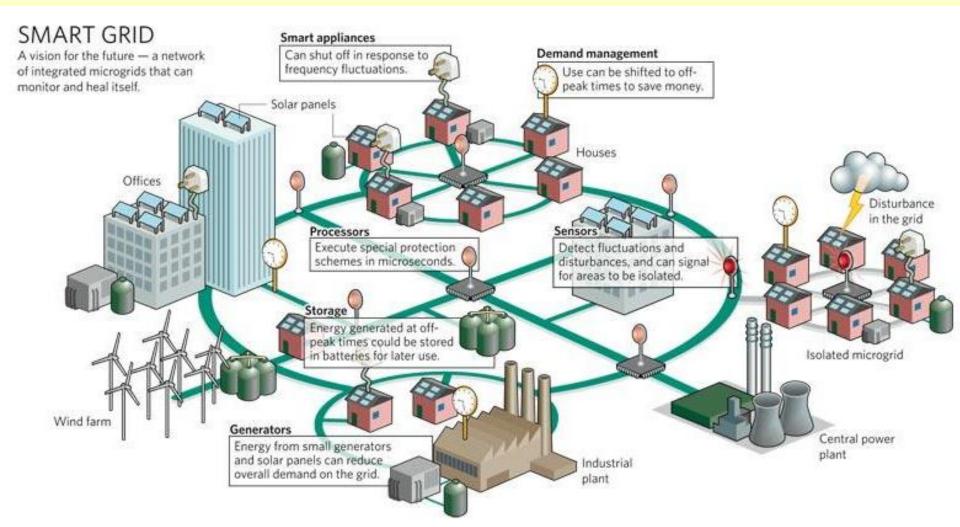
Energy Savings \$130 bn/year, \$1.2 tn savings through 2020

Upfront investment of \$520 bn needed

End-use demand reduced by 23% in 2020, 9 Quads.

Reduced GHG emissions of 1.1 GtC02e/year

By sector: end-use efficiency potential


Residential: 35%

Industrial: 40%

Commercial: 25%

Smart Grid

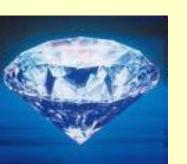
Integrating decentralized, intermittent sources Demand management, time-of-day pricing

Measuring and managing carbon is big business

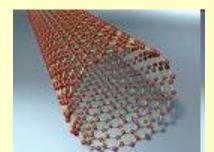
- ESCO market to grow \$5.6bn 2009 → \$20bn 2020
- Enterprise Carbon Mgt software: Logica, EnerNOC, SAP etc.
- accounting, consulting, legal firms
- Walmart's supply chain initiative
- carbon trading

Carbon Software: \$400m 2009 40% annual growth

Relevance of Carbon Information Systems


Multiple systems for diverse purposes

Carbon Disclosure Project: little value for carbon trading, cost control


Mandatory GHG reporting: preparation for trading, little mgt value

Carbon labeling: consumers confused, suppliers resistant, reality of integrated value chain carbon mgt?

Enterprise Carbon Management Systems: immature, expensive, needs aligning with cost acctg/mgt. systems

Measuring Carbon Risk? No Simple Metrics for Investors

Who will win in solar? – crystalline silicon? thin film? thermal?

Compact fluorescents vs. LED lighting?

Which auto companies best positioned in hybrids, EVs?

Will A123 Systems win in car batteries?

Which oil company more exposed, BP or Exxon?

Green Jobs

770,000 in the US in 2007 - Pew 9.1% annual growth

14,400 Mass. Jobs

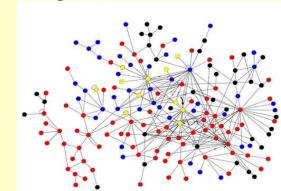
Top 5 Sectors for Clean-Tech Job Activity (U.S.)

Sectors	
Solar Power	
Biofuels & Biomaterials	
Smart Grid & Energy Efficiency	
Wind Power	
Advanced Transportation/Vehicles	

43% Energy Efficiency
28% Renewable
Energy
28% Consulting &
Support
1% University
Research

Northeast US Strategically Positioned to Benefit

Clean-tech business clusters:


Firms, Universities, Skills, Policies, Industry Assocs., NGOs, Venture Capital, Related Services

NorthEast has higher:

R&D per head in 10-State RGGI Region Fed University Funding for Science and Engineering

SBIR Phase 1 Awards
Clean Energy business cluster concentration
Labor force skills

Clean-Tech Job Activity - Top 15 U.S. Metro Areas

Rank	Metro Area		
1	San Francisco-Oakland-San Jose, CA		
2	Los Angeles-Long Beach-Riverside, CA		
3	Boston-Cambridge-Quincy, MA-NH		
4	New York-Northern New Jersey-Long Island, NY-NJ		
5	Denver-Aurora-Broomfield, CO		
6	Washington-Arlington-Baltimore, DC-VA-MD		
7	San Diego-Carlsbad-San Marcos, CA		
8	Houston-Sugar Land-Baytown, TX		
9	Chicago-Joliet-Naperville, IL-IN-WI		
10	Austin-Round Rock-San Marcos, TX		
11	Seattle-Tacoma-Bellevue, WA		
12	Atlanta-Sandy Springs-Marietta, GA		
13	Dallas-Fort Worth-Arlington, TX		
14	Portland-Vancouver-Hillsboro, OR-WA		
15	Sacramento-Arden-Arcade-Roseville, CA		

Top 10 Clean-Tech Employers (Publicly Traded Pure Plays)				
Rank	Company	Headquarters	Sector/Activity	Employee
1	Vestas Wind Systems	Randers, Denmark	Wind	20,730

Xinyu, China

Wuxi, China

Liberty Lake, WA

Shenzhen, China

Changzhou, China

Fort Smith, AR

Vitoria, Spain

Baoding, China

Hong Kong

Solar

Solar

Solar

Wind

Solar

Smart Grid

Energy Storage

Electric Motors

LED Lighting

13,464

12,548

9,000

8,200

7,891

7,250

6,721

6,505

5,813

LDK Solar 2

3

4

5

6

7

8

9

10

Suntech Power

China BAK Battery

Holdings

Trina Solar

Company

Baldor Electric

Gamesa Corpora-

Neo-Neon Holdings

cion Tecnologica

Yingli Green

Energy

Source: Clean Edge, Inc., 2010

Itron