Improvements in Technologies for Emission Reduction

August 17, 2006

David Foerter, Executive Director Institute of Clean Air Companies

> www.icac.com 1730 M St., NW, Suite 206 Washington, D.C. 20036 202-457-0911/dfoerter@icac.com

Improvements in Technologies:

Aging Stationary Source Infrastructure

New Technologies

Rethinking Smaller Emission Sources

Aging Infrastructure:

Aging industrial and power sector
Slow fleet turnover and retrofit technologies more difficult
Controls for new sources are relatively easy, effective, and expensive

Aging Infrastructure

- Utility boilers useful operating life?
- Retrofit: putting new equipment on older sources
- 30 years post CAAA: Retrofit 1/2 and 2/3 Coalfired Power with NO_x and SO₂, respectively
- Time to replace original retrofits (FGD, ESP, RTO, etc.)?
- Capacity expansion at industrial sources
 Don't fivete on new courses
- Don't fixate on new sources

New Technologies

New uses for existing technologies
Doing more with less
Integrated technologies
Materials and construction
Technologies for 'new' pollutants

New Uses for Existing Technologies

- ACI/PAC from MSW incineration to power
 Electron beam/plasma from clean rooms
 - to industrial NO_x, SO₂, VOC/HAP & odor
- Catalytic systems revisit due to higher fuel costs
- PM fine technologies
 - Fabric Filters: 30 years later
 - Electrostatic Precipitators: new & improved

Doing More with Less

Reagents:

- Less activated carbon halogenates
- Less lime/limestone enhanced forms
- Gas and sorbent injection
- FGD & ESP less energy
- SCR/SNCR less ammonia slip
- Flowpac/Bubbling Jet Reactor pumpless
- Industrial catalysts less fuel
- P² for industrials concentrate & control

Integrated Technologies

For Power:

- $NO_x + SO_2 + HG + PM + Condensables + CO_2$
- SCR+FGD+ACI+ESP+WESP+Amine Scrubber
- FGD in a bottle/Eurosilo
- Wet ESP integrated into FGD
- SNCR/SCR hybrids
- Mercury/particulate control Toxecon(s)
- For Petroleum, Pulp & Paper, Cement ...

Improvements in Materials and Construction

Material science

- Fiberglass reinforced plastics/rubber lined pipes
- Absorbers: steel alloys, tiles, FRP
- Steel alloys for advanced high temp/pressure boilers
- Baghouse fabrics
- Modular construction
- Loose the bypass duct; add quick access stack vent

Technologies for 'New' Pollutants

- PM fine tuned
- Mercury
- $-SO_3$
- Condensables control & measurement
 CO₂

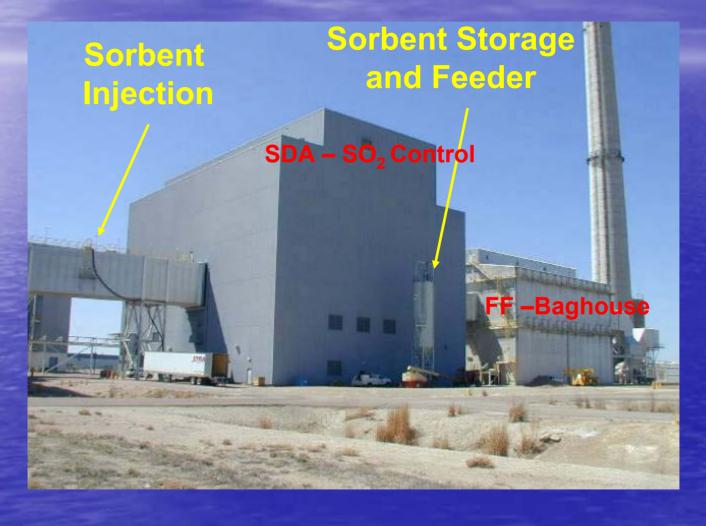
PM Controls

New life for old controls

 Advanced electrostatic precipitators
 Resurgence in fabric filters
 Condensables/SO₃

 PM for industrial sources
 Role of direct PM for local sources?

Wide Range of HG Control Options


Co-benefits

- SCR, FGD, ESP, FF, etc.
- Multipollutant control technologies
- Enhanced Co-Benefits
 - Chemical Oxidants
 - Oxidation Catalyst
 - High Energy Excitation
 - FGD Sorbents

- Pre-Combustion and Combustion Modifications
 - Coal Cleaning/Beneficiation K-fuel process
 - Increasing LOI GE Energy and Lehigh University
- Mercury Specific
 - Activated Carbon Injection (ACI/PAC)
 - TOXECON 1 and 2

Retrofit of ACI on an Existing Plant

EPRI TOXECON 2[™] Configuration

90% of Fly Ash Sell for use in 👩 concrete

Coal

Hg Sorbent

10% of Fly Ash + Sorbent Sorbent recycle Sorbent regeneration or disposal

Commercial Mercury Control Technology Bookings

Air pollution control vendors are reporting booking new contracts for mercury control equipment for more than a dozen power plant boilers. The contracts for commercial systems are attributed to federal and state regulations, including new source permit requirements and consent decrees, which specify high levels of mercury capture. Below is a summary of the mercury control equipment that has been procured to date:

	Plant Size (MW)	Location	Prime OEM Contractor	Coal	APC Configuration	Hg Control	New Plant or Retrofit	Regulatory Driver
			Wheelabrator/		TOVECON			
Unit 1	270	Midwest	NORIT	PRB	TOXECON	ACI	Retrofit	Consent Decree
Unit 2	250	East	Wheelabrator	Bituminous	SDA/FF	ACI	Retrofit	State Regulatory
Unit 3	250	East	Wheelabrator	Bituminous	SDA/FF	ACI	Retrofit	State Regulatory
Unit 4	650	East	Wheelabrator	Bituminous	ESP	ACI	Retrofit	State Regulatory
Unit 5	740	Midwest	B&W	PRB	SDA/FF	Br-ACI	New Plant	New Construction Permit
Unit 6	550	Midwest	B&W	PRB	SDA/FF	Br-ACI	New Plant	New Construction Permit
Unit 7	350	West	B&W	PRB	SDA/FF	Br-ACI	Retrofit	Consent Decree
Unit 8	350	West	B&W	PRB	SDA/FF	Br-ACI	Retrofit	Consent Decree
Unit 9	800	West	B&W	PRB	SDA/FF	Br-ACI	New Plant	New Construction Permit
Unit 10	350	East	ADA-ES	Bituminous	ESP	ACI	Retrofit	Consent Decree
Unit 11	350	East	ADA-ES	Bituminous	ESP	ACI	Retrofit	Consent Decree
Unit 12	204	MidWest	Dustex	PRB	TOXECON	ACI	Retrofit	Consent Decree
Unit 13	375	East	Wheelabrator	Bituminous		ACI	Retrofit	Concent Decree
Unit 14	650	Midwest	Alstom Power	PRB	SDA/FF	Br-ACI	New Plant	New Construction Permit
Unit 15	215	Midwest	Powerspan	Bituminous	Multipollutant	ECO	Retrofit	Construction Permit
Unit 16		Midwest	Mobotec	PRB	ESP	MinPlus	Retrofit	Construction Permit
Unit 17	750	Midwest	Wheelabrator	High Sul. Bit	ESP/WFGD/WESP	ACI	New Plant	Construction Permit
Unit 18	680	South	Alstom Power	PRB	DFGD/FF	Br-ACI	New Plant	Construction Permit
Unit 19	107	East	BPI	Bit./Bio- Mass	FT-SNCR/CDS/FF	ACI	Retrofit	DOE Demo.

CO₂ Capture & Control

 High efficiency generation is only first step in reducing CO₂ • Existing coal-fired power plants: 10-12 % CO₂ by volume Already have CO₂ systems – high cost Need new retrofittable CO₂ reduction and capture technologies for large existing fleet

General Improvements for Mercury Control

Techniques to enhance and control mercury oxidation
Techniques to minimize re-emission
Potential impacts on by-products
Less capital intensive techniques
Cost of mercury removal is coming down

CO₂ Separation & Capture Research & Options *

- "conventional technology" amine-based scrubbing
- Low-temperature (cryogenic) distillation
- Gas separation membranes carbon fiber, ceramics and high-temperature polymeric membranes
- Absorbents carbon or sodium, hydrides and lithium silicates
- Mineralization and biomineralization (carbonate solids)
- Oxygen-enhanced combustion approaches
- Chilled ammonia solvent with associated absorber/regenerator
- * "very little R&D has been devoted to CO₂ capture and separation technologies"

Rethinking Smaller Sources

Same issues as for power

- Older, expanding fleet
- Don't fixate on new sources
- Tough to trade
- Lack scalability
- Continuation of MACT process
- Need new paradigm for controlling existing industrial sources
- Look at low capital technologies
- Transferability of control technologies
- Develop market-based approaches

Conclusions

Huge market and rewards still in cleaning up the existing aging infrastructure
Low capital cost options increasingly available

 Need new approaches for controlling existing industrial sources

Appendix

Hybrid SNCR/SCR
 Co-Benefit Plus example
 Multipollutant control option - example
 CO₂ capture & control:

 Systems
 What we already know

Integrated Technology: Hybrid SNCR/SCR

- Redesigned SNCR System with In-Duct SCR
- Higher NO_x Reduction and Utilization than SNCR
- Lower Capital Costs than Full-scale SCR
- Greater Operational Flexibility
 - Seasonal NO_x Emission Limits
 - Seasonal and Daily Load Variations
 - Marketplace Variations (Fuel Supply, NO_x Credits)
- Maximum Reduction Achieved (>50%)
 - System Tuned to 2 (low load), 10, or 20 ppm slip
- Hybrid SNCR/SCR Operated for more than 5 years
 - 2 Utility and 3 Industrial Hybrid Applications

Recent Wet FGD Co-Benefit ... Plus

Mount Storm Site Test (WV) Eastern Bituminous Coal medium sulfur (1.82%) • 4,000 tons/day - 1662 MW (3 units combined) - Air Pollution Controls SCR – 2 layers ESP wet FGD – forced oxidation limestone

Results of Co-Benefit ... Plus

70% mercury removal with only wet FGD

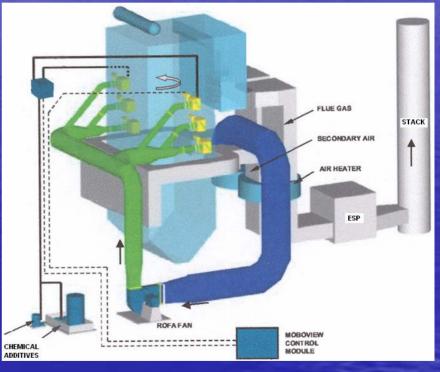
some mercury re-emission at outlet

80% mercury removal with wet FGD plus additive (w/o SCR)

- additive stopped mercury re-emission
- SO₂ removal by wet FGD system not impacted by additive technology

90% plus mercury removal with wet FGD & SCR

- > > 95% of mercury in oxidized state after SCR
- similar results with/without FGD additive (no mercury re-emission to control)


Demonstrated improvements using wet FGD additive process (B&W patented sodium hydrosulfide)

- Improved removal of mercury w/o SCR in-service
- Cost-effective incremental mercury removal (w/o activated carbon injection)

Additional Multipollutant Control Options

Mobotec Rofa & Rotamix Technologies

- MINPlus Sorbent Injection in Boiler
- Scrubber After Boiler
- Performance
 - 60 % NO_x
 - 65 % SO₂
 - Up to 90 % Hg
- Commercial Application
 - Minnesota Power
 - Taconite Harbor Energy Center
 - Startup 2006-2008 timeframe
 - \$60 million (includes NO_x control for Laskin Unit 2)

CO₂ Capture & Control - Systems

Post-combustion capture – chemical/physical separation

- Retrofitting/repowering existing power and industrial processes
- <u>Oxy-fuel combustion</u> O₂ injected into combustion chamber
- Produces CO₂ and water; some CO₂ recycled and mixed to absorb heat and control reaction temperature
 <u>Pre-combustion</u> – gasification producing synthesis gas of hydrogen and CO₂
- CO₂ separated from hydrogen prior to combustion

CO₂ Capture & Control: What we already know

- Separate and concentrate for sequestration
- Already captured in oil, gas and chemical industries
- Commercial cryogenic and carbon absorbent systems
- Routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H₂ production, and limestone calcination
- Recovered from combustion exhaust by using amine absorbers and cryogenic coolers
- Development and cost reduction using oxy-fuel combustion and amine separation