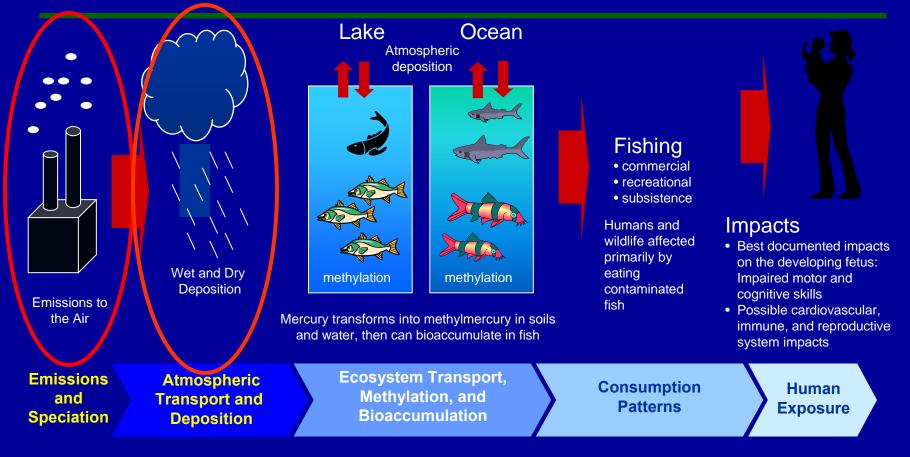
Mercury Deposition in the US

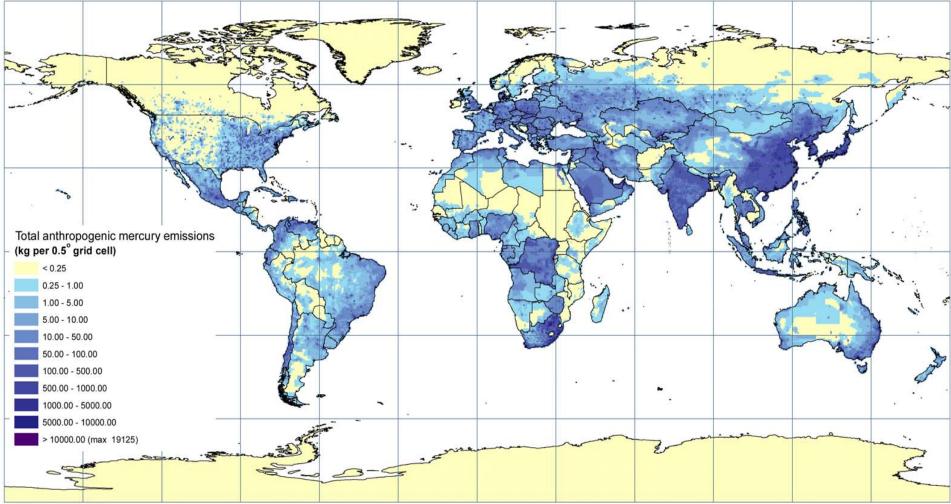
Jerry Keeler University of Michigan

Endicott House Symposium August 16–17, 2006, Dedham, MA

Today's Presentation

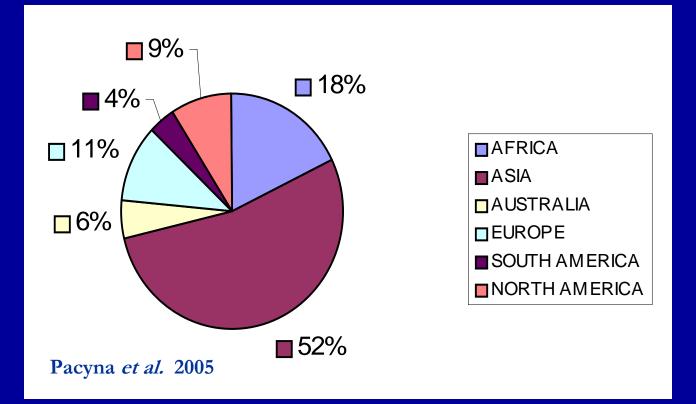

- Background
- Global Emissions Estimates for Hg
- Modeling the sources of Hg to the atmosphere
- Steubenville, OH Study
 - Levels and sources of wet deposition
 - Is this a deposition "Hot Spot"
- Dry Deposition
- What best predicts wet deposition of Hg?
- Summary

What have I done since the last time I spoke at the Endicott House Symposium


Mercury Emissions Contribute to Exposure to Mercury

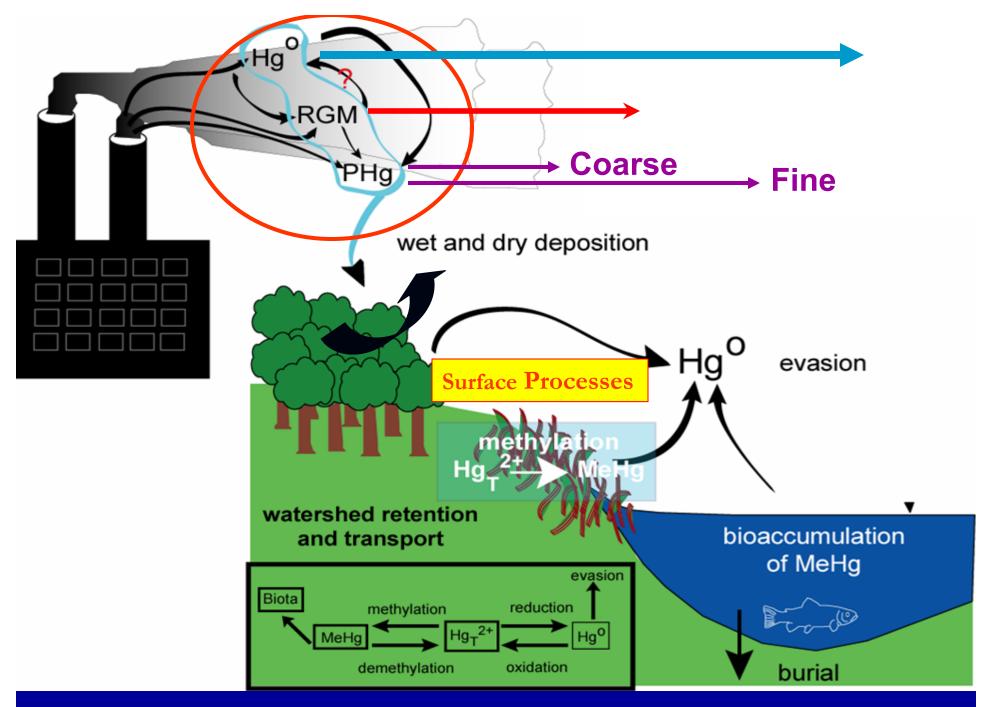
- The primary pathway of human exposure to mercury in the U.S. is through eating contaminated fish.
- Power plants emit approximately 48 tons of mercury and are the largest source of mercury emissions in the U.S. (approximately 41%).

Spatially Distributed Inventories of Global Anthropogenic Emissions of Mercury to the Atmosphere, 2000 Total Hg, point sources + distributed sources, 0.5° grid


unprojected (geographic)

citation: Pacyna, J., S. Wilson and F. Steenhuisen. 2005. Spatially Distributed Inventories of Global Anthropogenic Emissions of Mercury to the Atmosphere. (www.amap.no/Resources/HgEmissions/HgInventoryMain.html)

S. Wilson (AMAP), F. Steenhuisen (Arctic Centre, RuG), J. Pacyna (NILU)


Worldwide Emissions

Total Hg Emissions = 2300 tonnes

Speciation of mercury emissions the most important factor! Form of mercury emitted varies greatly by source type.

Modified from cartoon by Charles Driscoll, Syracuse University

Source Apportionment Modeling

- Relates sources and environmental concentrations
- Approaches to source apportionment
 - **Deterministic modeling** (e.g., CMAQ)
 - Requires emission inventory, chemistry, and meteorology
 - Models emission source impacts on predicted concentrations
 - **Receptor modeling**
 - Requires comprehensive environmental measurements
 - Statistically identifies sources impacting measured concentrations

Approaches are independent and complementary

Mercury Modeling Limitations

Current Deterministic Models

- Global speciated emission inventories
 Data improving but incomplete
- Incomplete understanding of Hg kinetics
- Precipitation prediction often problematic
- Wet and dry deposition parameterizations

 Insufficient handling of air-surface coupling, e.g. Hg⁰ uptake by vegetation.

Multivariate Receptor Modeling

- Identify major "factors" by statistical analysis of an element measurement matrix
- Relate "factors" to source types using tracer compounds
- Example tracers
 - Coal Combustion S, Se; Oil Combustion Ni, V
- Requires many samples (150 +)

Ohio Mercury Measurement and Receptor Modeling Study

- Applied both positive matrix factorization (PMF) and UNMIX models
 - Estimated source contributors to measured event wet Hg deposition


Uncertainty Analysis

- Both PMF & Unmix incorporate Bootstrap Uncertainty Analysis and provide the total uncertainty with the mean:
 - Fits the 5th & 95th Percentile in distribution of profiles.

Primary Objective of Study

Determine the impact of local/regional coal combustion sources on Hg deposition in the ORV.

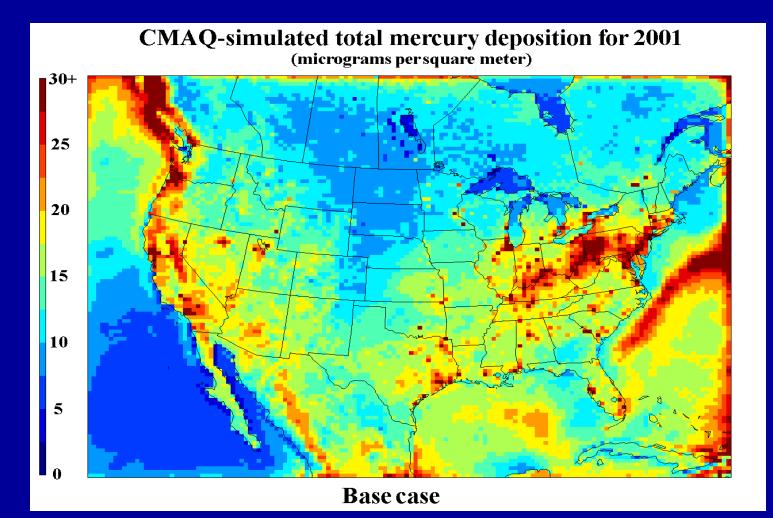
Ohio Mercury Study

- Cooperative Research with EPA ORD
- Sate-of-the-art measurement/analyses
 - Aerosols Integrated and Continuous
 - Wet Deposition Daily Event
 - Criteria Gases Continuous
 - Meteorology Continuous
- Receptor Modeling
 - UNMIX and PMF
 - Hybrid Modeling (Regional Transport)

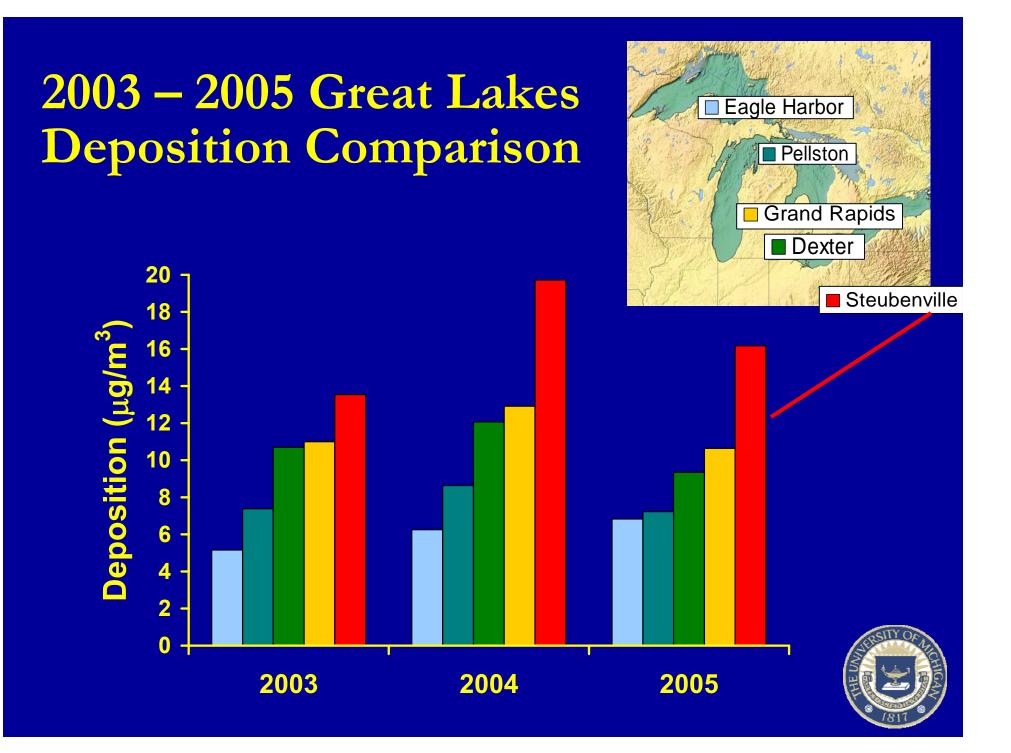
Steubenville PMF Results

2003 & 2004

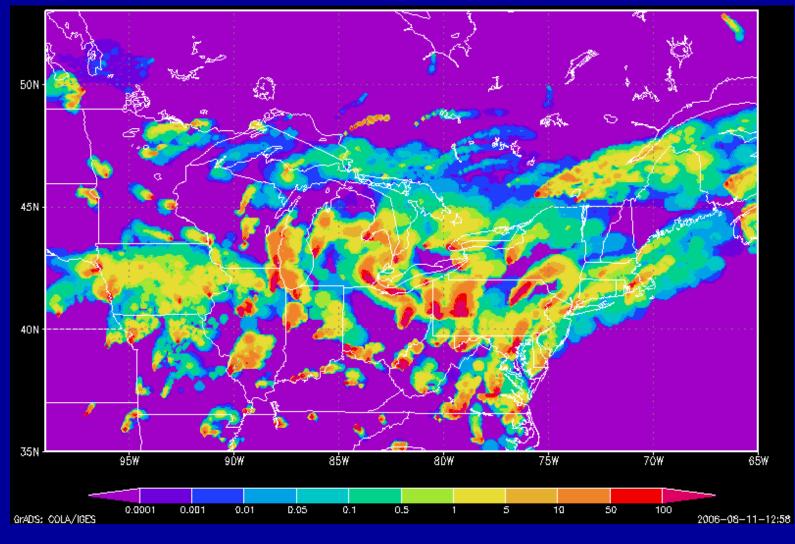
Analyte	Source 1	Source 2	Source 3	Source 4	Source 5	Source 6
	Iron/Steel	Oil & Incineration	Crustal	Coal Combustion	Phosphorous	Molybdenum
	Production					
Mg	187	*	558	*	101	*
Al	51	80	355	37	*	52
Р	7.8	*	*	*	63.8	*
S	*	*	642	11299	197	*
Cl	267	20480	*	584	*	771
V	2.9	1.1	*	*	*	*
Cr	2.5	*	*	*	*	*
Mn	54.4	*	34.1	*	15.4	*
Fe	344	102	17	37	27	*
Ni	*	3.19	*	*	0.68	*
Cu	1.8	14.0	*	18.4	2.7	7.0
Zn	4.0	44.1	6.1	10.7	5.3	15.6
As	*	0.81	0.10	0.49	0.05	0.27
Se	*	0.97	*	1.73	*	1.30
Sr	0.48	3.30	5.64	0.95	1.61	*
Mo	*	*	*	*	*	4.02
Cd	0.09	0.27	*	0.31	0.02	0.23
La	*	0.13	0.63	*	*	0.04
Ce	0.02	*	1.23	*	*	*
Hg	0.01	*	*	0.15	< 0.01	*
Pb	1.10	6.59	0.59	3.62	0.36	1.13
NO ₃	*	8639	1501	4532	314	*
% Hg	6	*	*	73	2	*


Source Apportionment Results Steubenville, Ohio

	Measured	PMF Estimated CFUB* Contribution	UNMIX Estimated CFUB* Contribution
2003	13.5	Mean = 9.1 (5-95% Cl ^Ω) = (6.4 – 14.7)	Mean = 9.9 (5-95% Cl ^Ω) = (5.9 – 15.1)
2004	19.7	Mean = 13.1 (5-95% Cl ^Ω) = (9.3 – 21.4)	Mean = 15.5 (5-95% Cl ^Ω) = (9.1 – 23.1)


*Coal-fired Utility Boiler ^Ω Confidence Interval

Modeling Used for Clean Air Mercury Rule



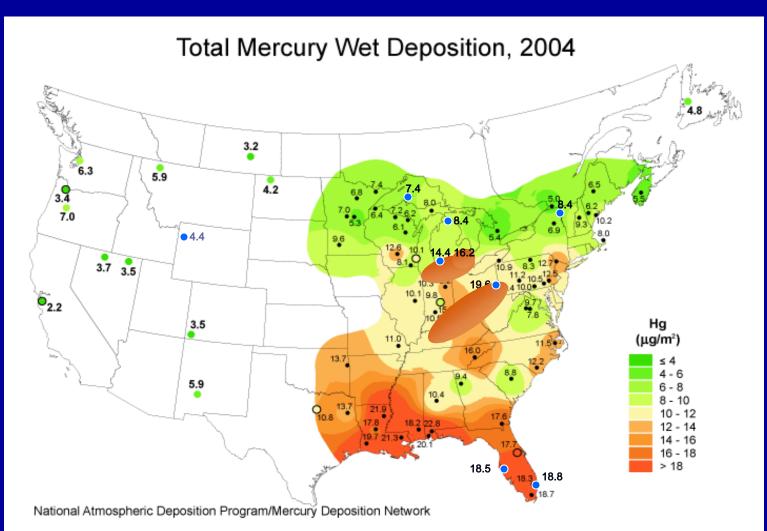
CMAQ Simulations performed by CSC for OAQPS (6FEB04)

Dry Deposition of Hg

August 10-11, 2006

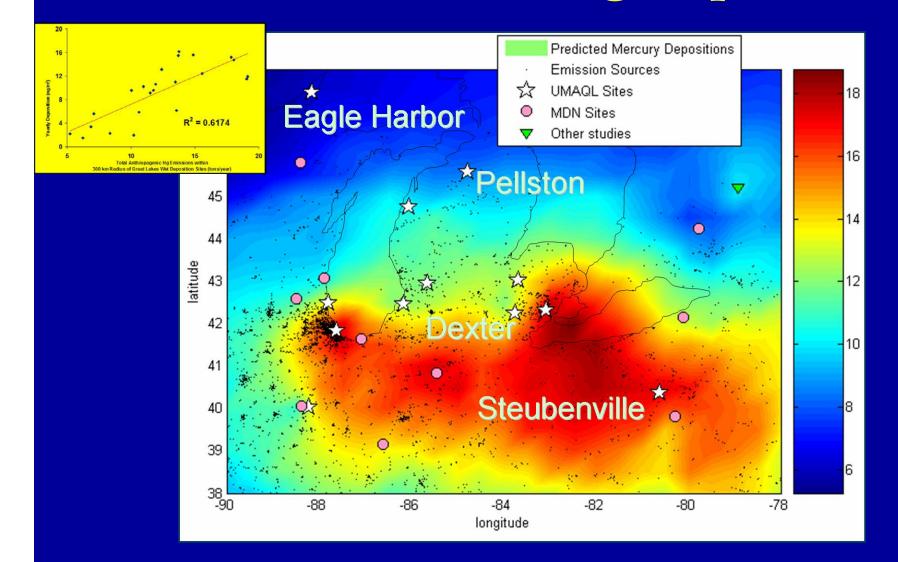
Comparison of USEPA CMAQ Results and Measured Mercury Wet Deposition at Steubenville

	Hg Deposition	CFUB Contribution	
	(mg m ⁻² y ⁻¹)	(%)	
CMAQ 2001 13.6		43	
	(modeled)		
PMF/UNMIX	16.5	72	
2003-2004	(measured)		


CMAQ Simulations performed by CSC for EPA (6FEB04)

CMAQ Modeled versus UMAQL Measured Hg Wet Deposition All 2001 Results

Site	CMAQ Wet Deposition (µg m ⁻²)	Measured (µg m⁻²)
Dexter, MI	8.3	12.5
Pellston, MI	4.6	10.5
Eagle Harbor, MI	4.7	7.7
Underhill, VT	4.4	8.6


CMAQ Results provided by Russ Bullock., USEPA

UMAQL EVENT SAMPLING SITES

What Best Predicts Hg Deposition?

Summary

- Hg wet deposition at Steubenville
 - ~ 80% attributable to local/regional anthropogenic sources
 - ~ 70% is attributable to coal combustion
 - ~ 20% from reemission/global background
- A significant portion of total Hg wet deposition is driven by a few local coal combustion dominated precipitation events
 - In 2004, >8% of Hg wet deposition occurred during 1 event and understanding the source(s) contributing important.
- Dry deposition even more local in origin and due to the bidirectional flux of Hg these measurements must be done on a high frequency.

Acknowledgements

Funding and other support provided by:

- National Science Foundation
- Michigan Great Lakes Protection Fund
- EPA Great Lakes National Program Office
- EPA Region V
- EPA National Exposure Research Laboratory
- EPA STAR Program
- Florida Department of Environmental Protection
- Collaborators at MI DEQ including Joy Taylor-Morgan