E.H. Pechan & Associates, Inc.

U.S. Inventories – Uncertainties and Ways to Improve

Jim Wilson E.H. Pechan & Associates, Inc.

Presented at MIT Symposium on Large Stationary Sources

August 16, 2006

Presentation Outline

Current picture of U.S. emissions
Plans for 2005 and 2008 data collection
EGU point sources
» Historical emissions
» Forecasts

Presentation Outline (cont'd)

Non-EGU point sources
 » Historical emissions
 » Forecasts
 * The inconvenient gases

U.S. National (48 State) VOC Emission Estimates by Year (thousand tons)

Sector	1990	2000	2010
EGU	35	41	43
Non-EGU Point	2,609	1,441	1,493
Nonpoint	11,678	8,544	8,516
Nonroad	2,666	2,565	1,875
On-Road Vehicle	9,328	5,246	2,601
Total	26,317	17,839	14,530

U.S. National (48 State) NO_x Emission Estimates by Year (thousand tons)

Sector	1990	2000	2010
EGU	6,411	4,494	2,307
Non-EGU Point	3,134	2,278	1,976
Nonpoint	4,801	3,886	3,678
Nonroad	2,068	2,092	1,634
On-Road Vehicle	9,536	8,074	4,290
Total	25,951	20,825	13,887

U.S. National (48 State) SO₂ Emission Estimates by Year (thousand tons)

Sector	1990	2000	2010
EGU	15,832	10,819	6,366
Non-EGU Point	4,293	2,199	2,167
Nonpoint	2,470	1,875	1,878
Nonroad	163	177	17
On-Road Vehicle	500	254	30
Total	23,260	15,326	10,459

Points of Emphasis in Next Inventory Cycle

PM Components
 Faster data collection and reporting

PM Definitions for the NEI

Filterable (PM-FIL):

» Particles directly emitted as a solid or liquid at stack or release conditions and captured on the filter of a stack test train. Filterable PM may be $PM_{2.5}$ or PM_{10} .

Condensible (PM-CON):

» Material that is vapor phase at stack conditions, but condenses and/or reacts upon cooling and dilution in the ambient air to form solid or liquid PM immediately after discharge from the stack. EPA considers condensible PM = $PM_{2.5}$.

PM Definitions for the NEI (cont'd)

» All particles directly emitted from a stack or an open source.

Secondary (PM-SEC):

- » Particles that form through chemical reactions in the ambient air well after dilution and condensation have occurred. Secondary PM formed downwind of source.
- » Precursors to PM-SEC are in the NEI: SO2, NOx, NH3, VOC
- » PM-SEC should NOT be reported in the emission inventory

Sources of Filterable versus Condensible Emissions

 Combustion sources typically emit both filterable and condensible PM emissions

- » Boilers
- » Furnaces/kilns

» Internal combustion engines (reciprocating and turbines)

What to Report to EPA – New Guidance

EPA can take all forms of PM, but prefer Primary Filterable!!

- » PM25-PRI (or PM25-FIL and PM-CON individually)
 - Note that all PM-CON is assumed to be PM_{2.5} size fraction)
- » PM10-PRI (or PM10-FIL and PM-CON individually)
- If submit other than Primary, then EPA creates PM10-PRI and PM25-PRI records

Implications

- Need to use the NIF 3.0 PM pollutant code extensions that identify the forms of PM (i.e., -PRI, -FIL, or –CON)
- Verify the form of the PM:
 - » Emission factors you use to calculate emissions; and
 - » PM emissions facilities report to you.
- Update your database management system to record these pollutant codes in NIF 3.0

PECHAN 12

Condensibles

New test methods are coming
 EPA encourages more industry source testing

Submit test data to EPA

Shortening the NEI Cycle

AERR Proposal » 2009 NEI – 12 month reporting deadline » 2011 NEI and Beyond – 6 month reporting deadline for point sources 2008 NEI Goal – Complete NEI in 18 months Ultimate NEI Goal – Complete NEI in 12 months

Rapid Inventory Development Pilot Implications for State/Local

Reporting deadline

- » 12 months attainable
- » 6 months not attainable
- S/L agencies which have their reporting deadlines after 1Q may need to change their deadline
- Electronic data collection necessary to meet tighter deadlines
- Concerns regarding nonpoint and mobile emissions

2008 Reporting Schedules

Published schedules are goals
Not settled on reporting dates
EPA working on these with STAPPA

History of EGU Emission Estimate

- Transition from DOE- and State EI-based estimates to CEM data
- 1. Provided feedback for revising historical NO_x values
- 2. Reduced uncertainties
- 3. Better temporal information
- 4. Data management issues

EGU Emission Forecasting

- Dominated by the Integrated Planning Model (IPM)
- EPA has used and updated this model for regulatory analyses
- 2. RPOs have adapted for regional forecasts—incorporated more site-specific data
- 3. Also addresses Hg and carbon dioxide
- 4. Issues-proprietary/black box?

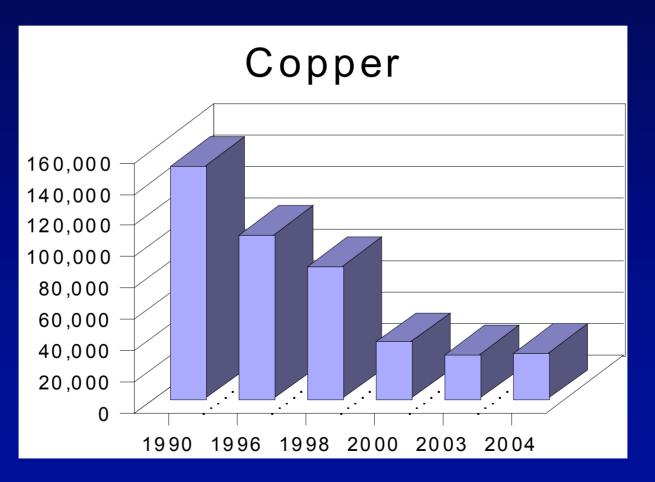
Relative Importance of Non-EGU Point Sources?

By 2010

- 1. Almost equal to EGU NO_x and PM_{2.5}
- 2. One third of EGU SO_2
- 3. Dwarfs EGU VOC and ammonia

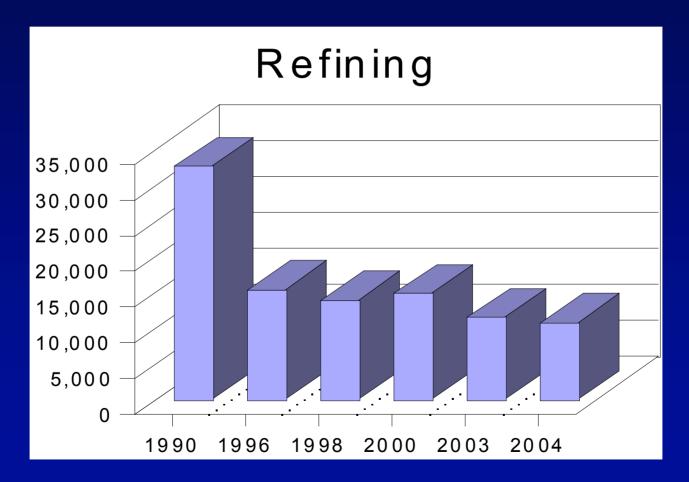
Important Influences on Future Non-EGU Emissions

- Current methods: Growth factor times control factor
- 1. This works well when growth factor closely tied to what drives emissions
- 2. And control factor correctly anticipates regulatory effect
- 3. How often does this happen?

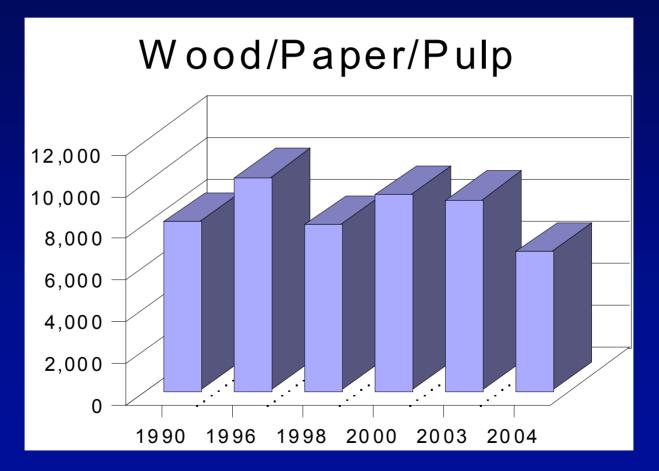


Other Factors That Influence Future Year Emissions

- 1. Technological change-capital turnover
- 2. Firms trying to avoid triggering PSD/new source review
- 3. Fuel switching
- 4. Measurement changes/improvements
- 5. International competition



309 State SO₂ Summary Copper



309 State SO₂ Summary Refining

309 State SO₂ Summary Wood/Paper/Pulp

Issues Presented by the Inconvenient Gases

- 1. State assessments of GHG emissions and mitigation options
- 2. GHG registries-by firm
- 3. Methods and evaluation tools can be different
- 4. Emphasis on state and sub-state-level
- 5. Protocols

NARSTO Emission Inventory Assessment

Action Plan for the United States

- Enhance the EIS and associated tools (such as SPECIATE) for PM_{2.5} and its precursors, especially for carbonaceous particles
- 2. Establish emission inventory reporting requirements for HAPs and integrate data into the NEI.

NARSTO Emission Inventory Assessment (cont'd)

Action Plan for the United States (cont'd)

- 3. Improve State, Local, Tribal capacity
- 4. Engage appropriate stakeholder groups
- 5. Increase support of research

Wrap Up

- Much Ado about 2002
- Wait and Hurry Up for 2008
- Condensed Version
- Monkey's off our back
- Utility function
- Kick it up a notch

