

Health Impacts of Power Plants: How to Assess Them

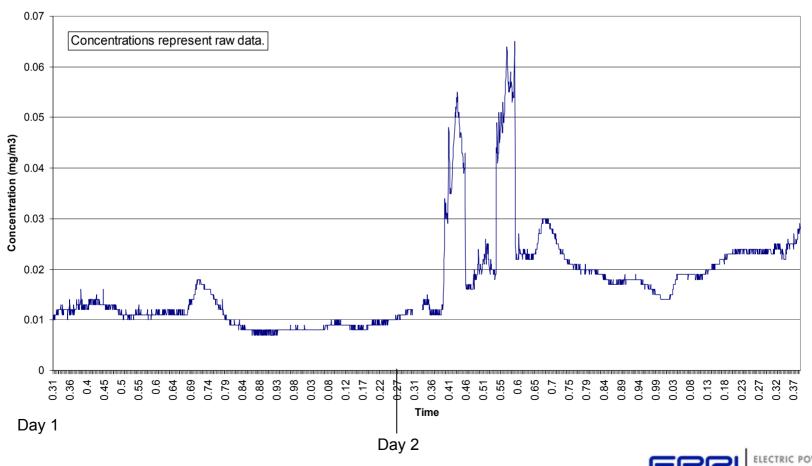
Ronald E. Wyzga Sc.D. EPRI Palo Alto, CA August 16, 2006

Air Pollution Health & Power Plants

How Do We Assess Effects?

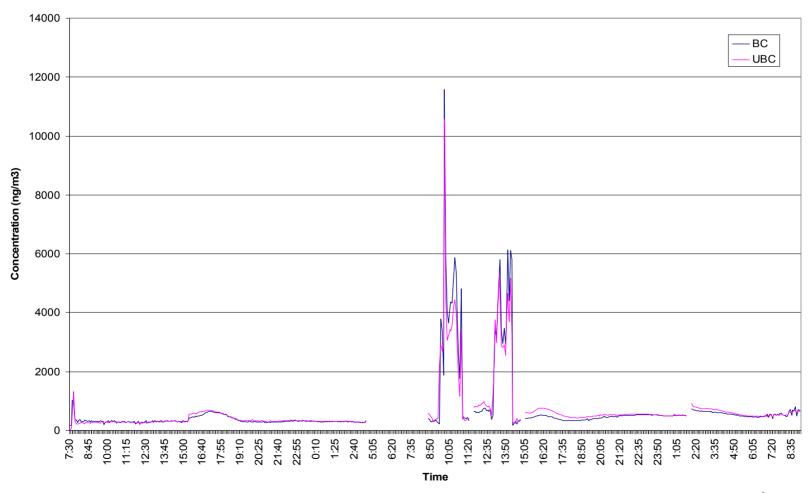
Power Plant Emissions

SO₂, NO_x


|

sulfates, nitrates, ozone

Exposure


- "Exposure efficiency" studies
- SCOPE studies [Sources and Composition of Particulate Exposures]
- St. Louis Bus Study

Fine Particulate Concentrations Trip 1, March 11-13, 2002: St. Louis, MO Senior Citizens

Black Carbon Concentrations

Trip 1, March 11-13, 2002: St. Louis, MO

Issues Raised

- Importance of peak exposures
- Importance of components

"Exposure Efficiency"

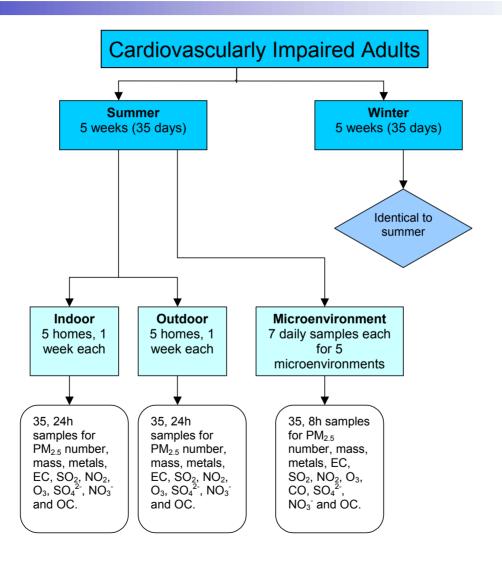
A Regression-Based Approach for Estimating Primary and Secondary Particulate Matter Intake Fractions

Jonathan I. Levy,1* Scott K. Wolff,1 and John S. Evans1

Table I. Intake Fraction Summary Statistics for Power Plants and Mobile Sources

Pollutant	Mean ¹	Standard Error of Mean	Minimum	Maximum	
Primary PM _{2.5}	2.2 × 10 ⁻⁶	1.9 × 10 ⁻⁷	2.5 × 10 ⁻⁷	6.3 × 10 ⁻⁶	
,	2.2×10^{-7}	8.2×10^{-9}	8.3×10^{-8}	3.0×10^{-7}	
NOx/ammonium nitrate	3.5×10^{-8}	1.3×10^{-9}	9.6×10^{-9}	7.5×10^{-8}	
Primary PM _{2.5}	9.1×10^{-6}	6.4×10^{-7} .	1.2×10^{-6}	1.8×10^{-5}	
SO ₂ /ammonium sulfate	1.8×10^{-7}	8.7×10^{-9}	4.8×10^{-8}	3.0×10^{-7}	
NOx/ammonium nitrate	3.1×10^{-8}	1.8×10^{-9}	5.3×10^{-9}	6.6×10^{-8}	
	Primary PM _{2.5} SO ₂ /ammonium sulfate NOx/ammonium nitrate Primary PM _{2.5} SO ₂ /ammonium sulfate	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Pollutant Mean 1 of Mean Primary PM2.5 2.2×10^{-6} 1.9×10^{-7} SO2/ammonium sulfate 2.2×10^{-7} 8.2×10^{-9} NOx/ammonium nitrate 3.5×10^{-8} 1.3×10^{-9} Primary PM2.5 9.1×10^{-6} 6.4×10^{-7} SO2/ammonium sulfate 1.8×10^{-7} 8.7×10^{-9}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Note: Derived from Wolff, 2000.


Quantities of pollutants emitted important

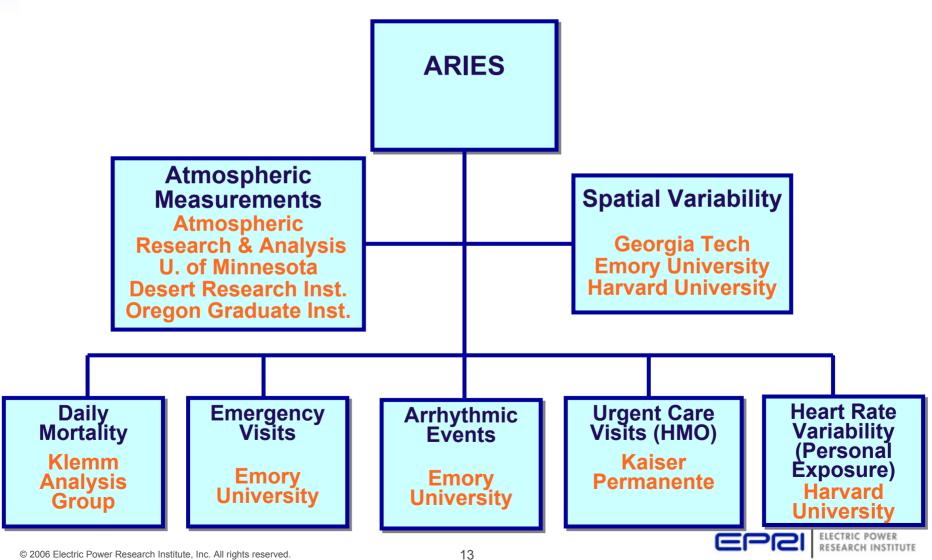
¹Weighted average of intake fraction estimates, weighted according to the relative emission rates in each of the four geographic strata (midwest, northeast, south, and west).

SCOPE

- Select sensitive populations
- Assess activity profiles by environment
- Sample environments by components
- Estimate personal exposure by components

Atlanta SCOPE

Epidemiology


- Components vs. Sources
 - Ambiguity of source signatures
 - Identification of "bad actors"
 - Chemistry influence on secondary pollution formation
- Components
 - ? Comprehensiveness (\$)
 - Multicollinearity

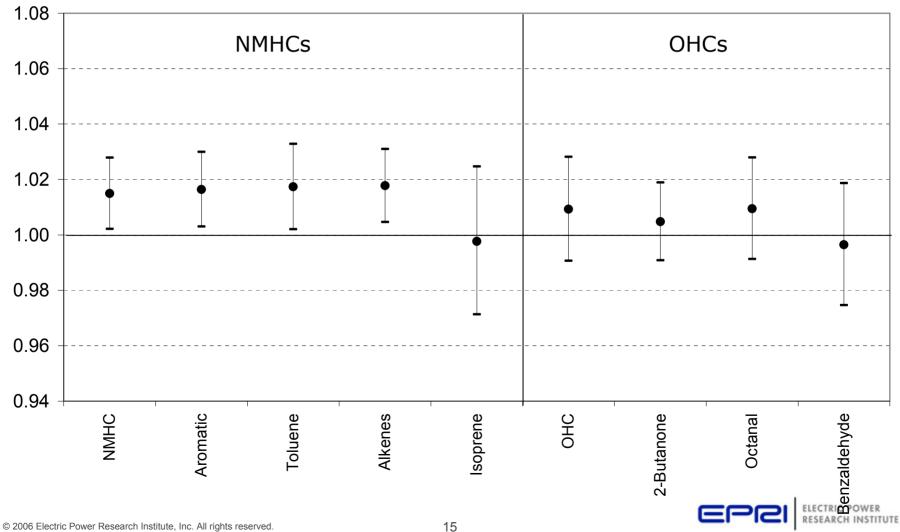
ARIES Program

- Combines detailed monitoring with several health endpoints
- Studies underway
 - Atlanta
 - St. Louis
 - Dallas
 - Detroit
 - Birmingham
 - NYC

ARIES Study: Atlanta

ARIES: Cardiovascular Endpoints (lag 0-1 day), Updated (up to 53-month) results

	Unscheduled	Emergency Room Visits:	ICD		Panel Study HRV		
	Physician Visits: Total CVD	Total CVD	Response	CVD Mortality	Ambient	Personal	
Ozone							
NO ₂							
СО							
SO ₂							
ОНС							
PM ₁₀							
PM _{coarse}							
PM _{2.5}							
Ultrafines							
SO ₄							
Acidity							
EC							
ОС							
Metals							


Significant +ve association

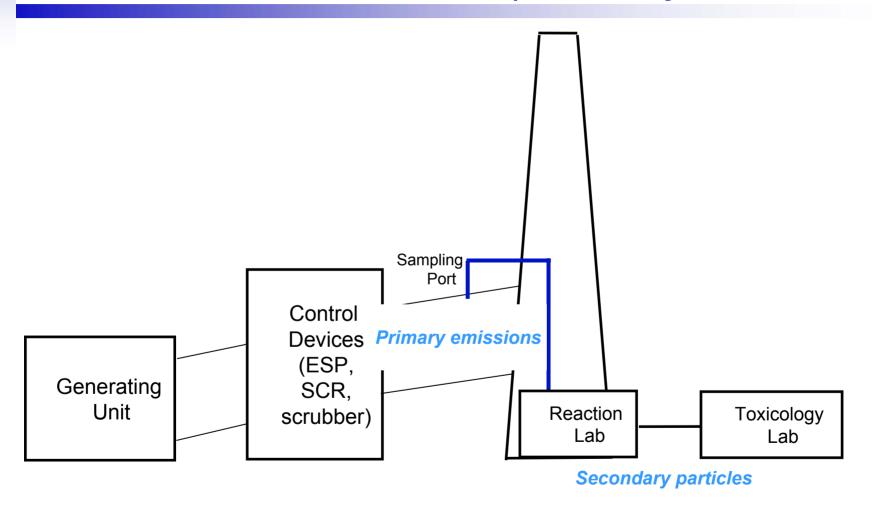
Significant –ve association

Preliminary + ve association

* lag 3-5 days **4-hour avg. conc

ED Visits for All Cardiovascular Disease

Summary: Cardiovascular ED Visits

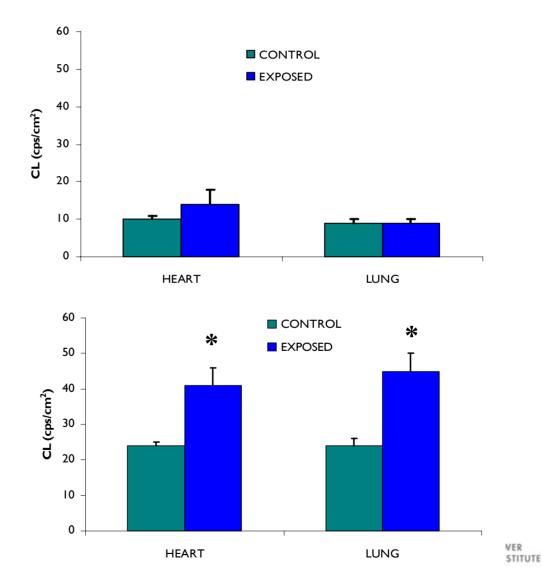

- Significant positive effects between cardiovascular ED visits and 24-hr VOC concentrations
- Associations highest for
 - Ischemic heart disease (IHD), myocardial infarction
 (MI) and congestive heart failure (CHF) ED visits
 - NMHCs, aromatics (toluene), alkenes
 - OHCs, 2-butanone

Respiratory ED Visits: Significant Results

- Asthma- none
 - Entire year: none
 - Summer period: NMHCs; alkenes, alkanes, PM₁₀; O₃, NO₂; PM_{2.5}; OC; EC
- Upper respiratory disease:
 - Entire year: PM10; O₃; NO₂; CO
 - Winter period: NMHCs
- Pneumonia- none
- COPD: several significant associations (entire year)
 - Non-methane hydrocarbons
 - Alkanes
 - Aromatic compounds
 - Toluene
 - Alkenes (not isoprene)
 - $-NO_2$
 - CO

Toxicology TERESA (*Toxicological Evaluation of Realistic Emissions of Source Aerosols*): Field Layout

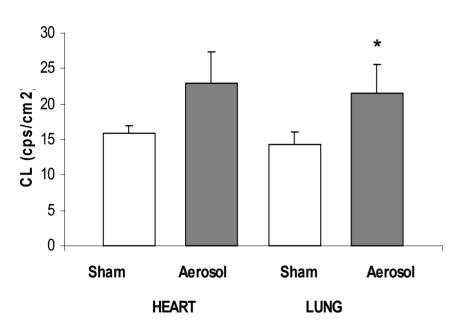
Three Plants in Program

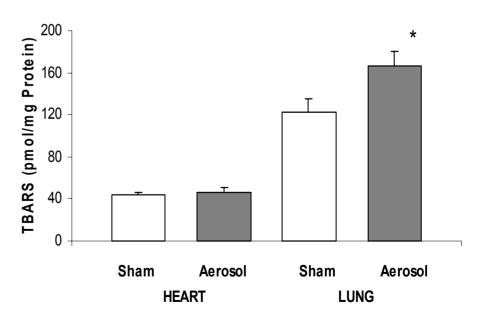

- Midwest: Powder River Basin coal (low sulfur, low ash), no SCR for NOx removal. Fieldwork completed November 2004.
- 2. Southeast: Low sulfur (<1%) eastern bituminous coal, no scrubber for SO₂ removal, with SCR. Fieldwork completed September 2005.
- 3. Midwest: Medium-to-high sulfur (>2-3%) eastern bituminous coal, scrubbed unit, with SCR. Fieldwork in July-September 2006.

Plant 1 Results: Oxidative Stress in Heart and Lung Tissue

TERESA: Power Plant Emissions

Boston Particles (Gurgueira et al., 2002)




Concentrations of Selected Components

Scenario	Р		РО		POS		PONS	
Plant	P1	P2	P1	P2	P1	P2	P1	P2
PM _{2.5}	-0.2	2.5	58	223	138	394	174	474
OC	24	42	23	17	86	80	73	64
Sulfate	0.7	0.4	32	101	57	139	71	156
Acidity	1.2	0	23	72	49	106	13	16

Plant 2: Oxidative Stress in Heart and Lung Tissue

Primary emissions + oxidized + secondary organic aerosol (n=8 in each group)

Oxidative Stress: GLM Output

Scenario	Р		РО		POS		PONS	
Ind. Plants	P1	P2	P1	P2	P1	P2	P1	P2
CL Lung	NS	NS	NS	NS	NS	↑ 0.005	NS	NS
CL Heart	NS	NS	NS	NS	NS	↑ 0.006	NS	↑ 0.07
Combined	Р		РО		POS		PONS	
CL Lung	NS		NS		↑ 0.05		↑ 0.012	
CL Heart	NS		NS		↑ 0.002		↑ 0.03	

P = Primary

POS = Primary Oxidized + Secondary Organics

PO = Primary Oxidized

PONS = Neutralized POS

Toxicology! Conclusions, Musings, and What's Next

- Slightly higher primary particle concentrations at Plant 2; different compositional profile
- Higher secondary PM concentrations at Plant 2
- Cardiac and pulmonary effects observed at Plant 2
- See most effects in scenarios with secondary organics
 - Effect of SOA alone? Probably not.
 - Interaction of SOA with component of mixture?
 - Additive/synergistic effect?
- Ongoing analyses to understand the significance of the differences between the plants/scenarios
- Plant 3 fieldwork underway

Overall Conclusions

- Role of organics
- Little with sulfates per se
- Gases can be important
- ? Interactions with organics
- Need more characterization within epidemiological studies

25

- Toxicological/epidemiological interface
 - More innovative designs

