The Electrical Blackout over Eastern North America August 14-16 2003: An Accidental Experiment in Air Chemistry

Presented at the LFEE MIT-NESCAUM Endicott House Clean Air Symposium on Air Emissions from Large Industrial Sources on August 17, 2006.

Russell Dickerson The University of Maryland

DMSP F15 14 August 2003 0129Z ~20 hrs before Blackout Ottawa Montreal Toronto Albany Detroit Boston Buffalo Cleveland Long Island MDE Columbus

DMSP F15 15 August 2003 0114Z

~7 hrs after Blackout

C3

Question: What would happen to air quality if emissions from power plants were suddenly eliminated?

Problem: Many of the pollution monitors were without power.

Experimental Control

Compare pollutant concentrations in the blackout region to those of:

- Blackout day, south of the blackout area.
- Meteorologically similar, non-blackout day in same location.
- All flights (1997-2003) with similar meteorology selected by an objective back trajectory clustering technique.

Power plants upwind of Cumberland were operating normally.

Back Trajectories

(24 hr @ 500, 1000, and 1500 m)

plot for 12Z 15 AUG 03 Surface data MDE 0,0¹⁷⁸61⁰¹⁸⁶ C $^{53}_{27}$ 80 12 82 226 750 -249 67⁰0²³⁰ Weather on the day of the blackout – High pressure means hot, sunny, stagnant, and (usually) smoggy. Intensities (Dbz 55 12Z 20 30 Fronts at

Idled power plants means improved air quality.

Observations over central Pennsylvania.

New point of reference: Clustered all profiles (hundreds) by meteorological condition based on back trajectories. See Taubman et al. *JGR*, 2006.

48 hour back trajectories ending at 2 km for all flights from cluster 4 $\overline{[O_3]}$ = 58 ppb near 1000 m 4

O₃ Median (10% & 90%) for afternoon Cluster 1 (62 profiles) Flights during Blackout in color.

SO₂ Median for afternoon Cluster 1 (54 profiles)

Particle scattering Median for afternoon Cluster 1 (42 profiles)

Particle absorption Median for afternoon Cluster 1 (52 profiles)

During the Blackout:

- Ozone was in the lowest 5th percentile of all observations; 25 ppb below median.
- SO₂ was below 5th percentile of all observations; a fraction of the median.
- Aerosol scattering in lowest 10th percentile; a factor of 3 below the median.
- Visual range increased by >40 km (25 mi).
- CO and b_{ap} (black carbon) were near the median.
- Forecast O₃ (regression equation) 115 ppb, observed 90 ppb.

Major Findings:

- Emissions from power plants can dominate aerosol loading over eastern North America.
- Long range transport (100's of km) played a major role in haze and photochemical smog (O₃) formation over the East Coast.
- Reduction in ozone exceeded that expected.

Why was the ozone so low?

Are there processes not well simulated by CMAQ? Is the O₃ production efficiency higher aloft than in PBL?

- More UV radiation for NO₂ photolysis aloft (Science, 1997).
- Reactions of NO₃ and VOC's at night remove odd oxygen and NOx (Brown et al., *GRL*, 2006). Could make EGU NOx more efficient than urban NOx.

$NO_2 + hv (+O_2) \rightarrow NO + O_3$

Altitude profiles of photolysis rate coefficients for solar zenith angles of 60° and 0° and aerosol optical depths of 0.0, 0.5., 1.0, 1.5, and 2.0.

CMAQ Blackout run 4 August 2002

Flight track of NOAA P3 aircraft August 2004.

Brown et al., *GRL*, 2006.

Area 3. Plot of nighttime chemistry of an urban plume showing permanent ozone destruction at night (blue points) with $\sim 1.6 \text{ O}_3$ destroyed for each molecule of NOy. Faster than in a power plant plume.

Mechanisms $2NO_2 + PM(H_2O) \rightarrow HNO_3 + HNO_2$ or $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ $\underline{\text{NO}_3 + \text{RCHO} \rightarrow \text{HNO}_3 + \text{RCH}}$ Net NO + 2O₃ + RCHO \rightarrow HNO₃ + RCH·

Take home messages.

- Using three methods to control for weather, ozone was tens of ppb below normal during the blackout.
- CO and b_{ap} remained high suggesting that other (s.a. mobile) sources were emitting normally.
- Why was ozone low during the heat wave this (2006) summer?

Cumulative distribution functions of the daily maximum 8-hr ozone concentrations at site ABT147 during the 'pre' and the 'post' SIP Call periods, based on: (a) raw data, (b) met-adj. data. Gego et al. JAMC, in review 2006.

The End.

Acknowledgements

Contributing Colleagues:

Bruce Doddridge Jennifer Hains Lackson Marufu Jeff Stehr Mike Woodman (MDE)

Diane Franks *(MDE)* Dave Krask (MDE) Charles Piety Brett Taubman Da-Lin Zhang

Supported by:

Maryland Department of the Environment, T. G. Aburn

The 2003 North American Electrical Blackout: An Accidental Experiment in Atmospheric Chemistry, Lackson T. Marufu, B. F. Taubman, B. Bloomer, C. A. Piety, B. G. Doddridge, J. W. Stehr, and R. R. Dickerson, *Geophys. Res. Lett.*, 31, 2004.