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Motivation 

• Biomass stoves and boilers are a significant 

source of pollution in rural wood burning areas 

of NY, NH, VT and ME 
– Release of PMs, CO, NO, etc. 

• Testing standards 
– Method 28 wood-fired hydronic heaters 

– BNL partial thermal storage (PTS) method 

• Fuel does not burn uniformly; simultaneous 

drying, pyrolysis, charcoal formation/oxidation, 

at varied rates 

• To accurately characterize efficiency and 

emissions it is important to know the time 

dependent composition of the fuel 

• Goal: Understand source of emissions and 

define reduction strategies 
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Experimental Setup: Boiler 



• BIOBLOCK®  fuel source to reduce run-to-run variability 

• 100% hardwood – red oak (CH1.7O0.72N0.001) 

• Consistent shape, size, moisture content ~ 8.3% 

• Repeatable loading configuration 

 

Experimental Setup: Fuel 



Flame Visualization 

Upper Chamber  

Lower Chamber 

High Speed Video 

 - Slowed down 300 times 

 - Approximate flow velocity (10 m/s) 

 



Bosch O2 Sensor 

(correct for water condensation) 

Testo model 330-2LL 

(CO, NO and O2)   
Instrument Cluster tube 

Baseline Emission Diagnostics 



 Testo Measurement Interpretation 

• Testo measures O2,CO & NO – all other species are inferred 

• CO2 and H2O are important major species of combustion and 

are primary indicators of combustion efficiency 

• CO2, H2O are inferred using a chemical balance:  

  

fuel + air  products 

 

• Note: most (all?) current inference methods (incorrectly) 

assume constant fuel composition 
 

 



Inferring CO2 and H2O  

 

CwHxOyNz + a(O2 + 3.76N2 + 𝛾H2O) + bH2O ➣ cH2O + dCO + eNO + fCO2 + gN2 + hO2 

 

 

• Constant w, x, y, z 

• 𝛾 defined by humidity gauge at blower inlet 

• b defined by fuel moisture measurement (~8%) 

 

7 unknowns for a, c, d, e, f, g and h 

- 4 atom balances (C,H,O,N) 

- 3 measurements of CO, NO, O2 

Constant Fuel Formulation (CFF) 

Fuel +Air +Wood Moisture ➣ Exhaust Species  



• Three modes of burning  

– Early = fuel pyrolysis with large flames (first CO peak) 

– Intermediate = pyrolysis and char formation 

– Late  = charcoal oxidation (second CO peak)  

Early Intermediate Late 

Non-homogenous Fuel Decomposition 



 Non-homogenous Decomp. - Lit. Review 



Inferring CO2 and H2O  

 

C1HxOyNz + a(O2 + 3.76N2 + 𝛾H2O)  ➣ cH2O + dCO + eNO + fCO2 + gN2 + hO2 

 

Advantages: 

– fuel composition is NOT specified  

– fuel moisture content is NOT specified 

10 unknowns for a, c, d, e, f, g, h plus x, y, z,  

- 4 atom balances (C,H,O,N) 

- 3 measurements of CO, NO, O2                     .    

= 3 more constraints (or measurements) required 

-  assume NO comes from fuel (e=z and g=3.76a) 

=  2 more constraints (or measurements) required 

 

1) H/O ratio = 2 in the fuel 

2) Measurements of fuel mass loss and air flow rates 

 

 

 

Variable Fuel Formulation (VFF) – x, y, z are unknowns 

Effective Fuel +Air ➣ Exhaust Species  



Real-Time Fuel Burn Rate Monitor 

Measuring Fuel Mass Loss and Air Flow Rates 

Airflow measured using calibrated Bosch meter with ASME venturi 

 



Validation using TDLAS 

Catch Flue Pitch 

Flow 

Top-Down View 

TDLAS = Tunable Diode Laser Absorption Spectroscopy 



TDLAS Primer 

Gases absorb light at different 

wavelengths 

 

Calculate properties of gas from 

shape of absorption features 



TDLAS Experimental Setup 



TDLAS Experimental Setup – Pitch Side 

Detector 
Germanium 

Etalon 

Laser 

CaF2 

Beamsplitter 

Mirror Periscope 



Results: Flue CO2 and H2O emissions 

• VFF and TDLAS match !!! 

XCO2 vs. time  XH2O vs. time  



Consequences: Time Dependent Fuel Comp. & HHV 

• New inference allows for the prediction 

of the time dependent fuel composition 

and instantaneous heating value 

 

 

 

 

* HHV=(33.5[C%] + 142.3[H%] - 15.4[O%] - 14.5[N%]) x 10-2 

* Demirbas, Combustion characteristics of different biomass 

fuels, Prog. in Energy & Comb. Sci. 30 (2) (2004) 219–230.  

 



Consequences: Instantaneous Thermal Efficiency 



Consequences:  Fuel Sensitivity Interpretation 

• Fuel: 
– Red Oak (BIOBLOCKS®)..…….... C1H1.7O0.72N0.001 

– Cherry cord-wood………………... Comparable to oak 

– Pine 2x4 (no bark) ………………. C1H1.7O0.83 

• Comparable H/C and O/C ratios among various wood 

species  

• Lower N/C ratio observed with pine due to absence of 

nitrogen rich bark 



Consequences:  CFD Modeling 

• Time varying fuel for CFD combustion 

models 

– Prediction of spatial and time dependent 

temperature and species fields 

• Explore CO reduction methods for 

lower chamber 

 

 
Baseline  Mixing Pot 



• Agrees fairly well with experimental data 
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Consequences:  Modeling 

CO 



Summary and Future Directions 

• Gas emissions are strongly dependent on non-homogeneous fuel 

decomposition 

• New emission inference method developed 

– Utilizes fuel mass loss rate and air flow measurements 

– Assumes H/O molar ratio = 2 in fuel 

• Validated new method using TDLAS 

• New insight on the operation of two-stage boilers 

–  Instantaneous caloric value and elemental composition of the fuel 

–  Instantaneous thermal efficiency 

–  Meaningful time dependent fuel input to CFD models  

 

 

 

• Potential Future Directions 

– Relax H/O = 2 assumption & directly measure H2O and CO2 via 

miniaturization of TDLAS or some other inexpensive off-the-shelf 

instrument 

– Optimize boiler operation using improved control logic using instantaneous 

thermal efficiency 

– Real time monitoring 
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Thank you!     …   Questions?  


