# Dispersion Modeling Assessment of Impacts of Outdoor Wood Boiler Emissions in Support of NESCAUM's Model Rule

Prepared by

Impact Assessment and Meteorology Section Division of Air Resources NYSDEC

# I. Introduction and Background.

The increasing use of outdoor wood boilers (OWBs)<sup>a</sup> in recent years has led to a corresponding increase in concern over the health effects of the emissions associated with these units, in addition to the fuel combustion characteristics due to proximity of these units to both the users and their neighbors. This has, in turn, led many states to consider new regulations or guidelines for these devices. One of these efforts has been undertaken by the northeast states through NESCAUM, which is preparing a model rule to assist states for use when considering emission limits and stack height and/or unit setback requirements and to create consistency among state regulations.

In order to support some of the concepts in the model rule, NESCAUM requested an air quality modeling exercise to assess the impacts of these units in a variety of situations and configurations. These simulations are meant to be representative of OWB installations currently in use, many of which do not seem to match purported "proper" locations for OWBs, as well as, in possible future configurations and emissions scenarios. The pollution metric for which the impacts were estimated is the 24-hour PM concentration, which was deemed to be the controlling threshold for the pollutants of interest from these units, as well as the averaging time of concern versus the effect of annual operations. As a threshold for comparison of the impacts, the revised National Ambient Air Quality Standard (NAAQS) for the 24 hour PM<sub>2.5</sub> level of 35 µg/m³ is used. However, the results allow for comparison to the 24 hour NAAQS for PM<sub>10</sub> as well.

# II. Modeling Assumptions and Approach.

The modeling was performed using the EPA's AERMOD model<sup>c</sup> which was recently promulgated as the recommended approach for a variety of source specific assessments. It incorporates the latest state-of-the-science in atmospheric transport and dispersion concepts, including a revised approach to building downwash effects. In order to assess the implications of possible wide range of conditions, a set of combinations of stack parameters, device proximity to buildings, meteorological data sites, and the influence of receptor height were tested. The results of these combinations were then scales with four emissions scenarios representing existing and proposed emission rates. The various model input parameters required for the modeling are outlined in the following sections.

Stack and Emissions Data: The OWBs in use currently are represented in the model as a building 4 feet by 6 feet, and 6.7 feet high ("weighted" height of the pitched roof). The stack is 10ft high along the shorter side of the unit and has a diameter of 6 inches. In addition to this stack height, another height at 18ft was tested to account for potential

<sup>a</sup> Also known as outdoor wood furnaces, waterstoves or outdoor hydronic heaters,

EPA's Guideline on Air Quality Models, Appendix W of 40 CFR Part 51

<sup>&</sup>lt;sup>b</sup> Some of the figures presented also highlight impacts at the 30 μg/m³, which is the level supported by CASAC and the NESCAUM states.

extensions of the stack to mitigate the unit's downwash effects on the plume. Other stack parameters were derived from actual data that NESCAUM obtained during stack testing. It was found that the units generally spend about 25% of the time in burn mode with the dampers open, and 75% of the time in standby mode, with the dampers closed. The stack testing measured a stack velocity of 1.98 m/s in burn mode and 0.74 m/s in standby mode. The corresponding stack temperatures were measured at 491°F in burn mode and 228°F in standby mode. These values were then weighted averaged for use in the modeling as 1.05 m/s velocity and 294°F stack temperature. All model runs were performed using a unitized emission rate of 1 g/s, and the model outputs were then scaled to four emission rates provided by NESCAUM representing the existing conditions and potential future limits. The rate for existing units was set to 161 g/hr. The stack parameter and emission rate data used in the modeling are based upon the only known field test of an in-use unit operations which was witnessed by state staff as of the writing of this report. The Phase I rates were set based on an emission rate of 0.44 lb/mmBtu heat input. This number was converted to a grams per hour number for residential units with a rated heat output of less than 350,000 Btu/hr. This number set a range of emissions from 16 g/hr to 70 g/hr with an average emission rate of 43 g/hr. For this report, emissions were modeled at the average emission rate of 43 g/hr and the maximum emission rate of 70 g/hr. The potential Phase II emission rate was set at 15 g/hr since the model rule establishes an emission limit of 0.32 lb/mmBtu heat output with no individual test run to exceed 15 grams per hour.

- Building Downwash Parameters: One of the significant effects considered in the modeling for these units is the downwash experienced by the plume from the relatively short stack due to the flow disturbance imposed by the unit itself. In order to test the effects of raising the stack to a height which minimizes these effects, that is to Good Engineering Practice (GEP) height, another stack height of 18ft was also modeled. Rarely, however, are these units in a "stand alone" mode. The more commonplace use of these units in practice is wherein an adjacent house or another structure exists. Thus, typically these structures would impose additional downwash effects and were approximated in additional modeling as a house (6m height and 15 by 20m) or a 40ft height barn (13m high and 25 by 30m) located about 20ft from the units. This determination was based on information obtained by agency staff on unit installations. To test the effects of the distance from these structures and their orientation, a limited number of additional model runs were performed as described below. It should be noted that general GEP guidance suggest that in order to minimize structure influence on the unit's plume, these units have to be at a distance of at least 5 times the height of the nearby structures, or about 100 and 200ft away from the house and barn, respectively.
- 3. Receptor Locations and Heights: Due to the short stack and the high potential for building downwash, which would quickly bring the plume towards ground level, the likely impact areas were deemed to be very close to the unit. Thus, a dense receptor grid next to the unit was generated for the modeling. A polar receptor grid was chosen with receptors located at each 10-degree increment of angle. Within 100 meters of the source, receptors were spaced 10 meters apart along each radial, beginning 10 meters from the

source. Beyond 100 meters, the receptors were spaced 50 meters apart, extending out to 500 meters from the source. The initial modeling results indicated that impacts maximized close in and gradients dropped off beyond 100 meters of the source, confirming that the sparser receptor grid beyond 100 meters was justified. All receptors were assumed to be at flat terrain in most of the model runs. Given the low level plume heights and the significance of building downwash effects in determining maximum impacts, it was determined that terrain effects are not likely to be a major factor in defining the controlling concentrations for these single source simulations. Terrain effects on individual sources are most significant for elevated sources when plume impaction on terrain features is likely. Another scenario under which terrain effects could be important is the case of a well-defined valley flow with sheltering which results in periods of stagnation characterized by low wind speeds and stable conditions, resulting in accumulation of emissions. The latter scenario cannot be properly simulated by the steady state AERMOD model and any potential future simulations would have to address this issue with a proper model. However, since the purpose of the current study is to provide reasonable estimates of impacts from individual OWB under various scenarios, limited model runs with terrain heights close to plume height were tested to determine the effects on the maximum impacts for select scenarios.

 Meteorological Data: In order for the results to have general applicability, it is necessary to test the results with multiple meteorological data sites of varying conditions. Practical limitations and time constraints, however, dictated the use of three data bases readily available in the AERMOD input format previously processed for applications in New York. Five years of data are available at these sites, but the initial modeling runs were performed with only 1 year from each site: 2002 from Jamestown, 2000 from Eric, PA and 1992 from Syracuse. Fortunately, these data are deemed to represent a range of wind patterns and conditions, as depicted in the attached figures of wind roses for the data. It is noted that there is good representation of low wind speeds conditions, which could potentially be associated with worst case impacts. It was also presumed that the downwash effects will likely dominate the worst case impacts for the 24 hour averages and the specific data base might not be as critical as in other applications. The initial modeling results generally confirmed this presumption, but additional four years of meteorological data from Syracuse, which corresponded to the maximum impact from all scenarios, were also used for assessing the year to year variability of the maxima for some of the scenarios.

Using these input parameters, a number of model runs were made for a combination of the variables. Specifically, both stack heights were initially modeled in the stand alone and next to the house and barn situations with one year of meteorological data from two of the three meteorological data sites to determine the variability in impacts. Both stack heights were also tested with the limited terrain feature with Jamestown 2002 data, while the 10ft stack case was tested with a different stack location, building orientation and direction from the house since this was the structure resulting in the higher impacts. The worst case 24 hour impact from each model run was tabulated and used to guide further

analysis with the additional Syracuse data. The latter modeling runs were set to also provide the 8<sup>th</sup> highest impacts for comparison to the form of the 24 hour PM<sub>2.5</sub> standard.

# III. Results and Conclusion.

The modeling analysis was carried out to answer certain general questions on the consequences of emissions from OWBs under various configurations. To the extent that refinements to the modeling assumptions could be made to determine their influence of the results due to certain regulatory requirements, these were limited to the parameters of significance. For example, to test the influence of using five years of meteorological data, as required by EPA modeling guidance, a set of such calculations were carried out with one of the data sets to deem the influence of such variability on the general conclusions. The same approach was taken in determining whether these conclusions would differ with the use of the different stack to building configuration, or the specific form of the threshold used for comparison of impacts to the revised 24 hour PM<sub>2.5</sub> standard, or the consideration of background levels.

Details of all modeling results are presented in Appendix A and are summarized in Table 1. Table 1 presents the maximum 24 hour impacts under various stack configurations and the four emission rates. Appendix A outlines the approach taken in the modeling and the stepwise process of addressing the specific source configurations and assumptions tested. Not all combinations of the parameters were analyzed. Rather, as combinations were tested and results summarized in Table 1, the next set of model calculations were limited to those conditions which required further reinforcement or testing. A summary of all the results are presented in the first page of Appendix A. Modeling results for one-year of meteorological data for Jamestown and Erie are presented on the next two pages of Appendix A. This Table includes the maximum and second highest impacts with a "unitized" emission rate of 1g/s which is then scaled to impacts for the existing scenario emission rate (0.045g/s). The corresponding location of the impacts, any terrain feature height and the meteorological day of the maximum are also listed for these results.

The next set of modeling results, presented in Appendix A, provide impacts for the additional one year of Syracuse data. This Table includes, in addition to the maximum 24 hour impact, the 8<sup>th</sup> highest impact for the scenarios modeled. In this case, the impacts are scaled to the four different emission rates for existing units, the average and maximum Phase I emission limits, and the maximum rate for Phase II emission limit. It should be noted that in some of these results, the maximum impact was found to be located "upwind" of the stack location due to the back circulation in the cavity imposed by the nearby structure. Although these impacts are considered valid, the maximum impacts downwind of the stack were tabulated instead to avoid any confusion. However, it was noted that the differences in these impacts were very low (i.e. about 2percent). The final two pages of Appendix A present the summary and the detailed information, respectively, of using five years of meteorological data from Syracuse for the maximum and 8<sup>th</sup> highest impacts. The purpose of the latter impact is to roughly represent the form of the 24 hour PM<sub>2.5</sub> standard which is the average of the 98% of the concentrations.

Appendix B provides the meteorological data associated with sample days of maximum impacts. These data can be used to address not only the question of the conditions associated with high

expected impacts, but also the likely persistence of the conditions causing the maximum over the daily period of the boiler operations cycle. These also allow the inter-site comparison of conditions to identify any potential differences which might be associated with the use of limited number of sites of meteorological data.

For the purposes of general conclusions seen in these results, the maximum 24 hour impacts under the stack and emission scenarios modeled are summarized in Table 1. It should be noted that for Syracuse data, some of the scenarios (2a,1b,2b-corresponding to Appendix A scenarios) include not only the maxima associated for the 1992 "base" year modeled, but also the overall maximum for any of the 5 years of data. For the 2a case (i.e. 10ft stack next to a house), 1992 data resulted in the overall maximum; thus there is only one impact presented per emission rate. These impacts could be viewed in the context of various thresholds for PM<sub>10</sub> and PM<sub>2.5</sub>; here we chose to compare these to the revised 24 hour PM<sub>2.5</sub> standard of 35 ug/m<sup>3</sup>. Although most conclusions are based on the incremental impacts due to a single wood boiler, the considerations of 8<sup>th</sup> highest impact and of background levels are also discussed below. In addition since a number of scenarios projected impacts above the 35 ug/m<sup>3</sup> level, some of the results were plotted on the receptor grid to determine the areal extent of these exceedences. These results are presented in graphical form in Figures 1 to 8 and are discussed in the following observations:

- 1) Table 1 indicates that the impacts associated with existing emissions are above the revised 24 hour PM<sub>2.5</sub> standard under all conditions modeled. This includes the cases of stack extensions by 8 ft, which only has a significant effect in reducing impacts in a "stand alone" configuration. Some of these impacts are also above the PM<sub>10</sub> 24 hour standard of 150 ug/m<sup>3</sup>. The maximum impacts are associated with the configuration of the boiler stack being within the influence of a nearby house ("nearby" is generally recognized to be 5 times the height of the structure of influence). The impacts associated with a nearby barn with larger dimensions are somewhat lower, likely due to the additional dilution of the already low level plume by the structure's downwash effects.
- 2) The meteorological data site does not play a significant role in the determination of these maxima. That is, the meteorological conditions associated with the worst case impacts are found to be similar in all three data sets and the maxima are likely associated with the downwash influences of the boiler "structure" or other nearby structures. Even with the case of the extended stack height of 18 ft on a stand-alone boiler, where downwash effects are minimized, there is consistency in impacts from the three data bases. One exception is a unit with a 10ft stack next to a house. In this case the predicted impacts are somewhat higher with Syracuse data. The reason for this seems to be more hours of lower wind speed and directions to the specific receptor associated with this maximum, based on a review of the Appendix B meteorological data.
- 3) A review of the selected days of meteorological data of Appendix B indicates that the conditions associated with the maxima are generally moderate and some low wind speeds during nighttime, moderately stable conditions, but association also exists with higher wind speeds or convective conditions. It is also seen that the specific hours which transport the plume to the receptors of maxima are limited to a handful of hours, which means that it is not necessary for

prolonged persistence to occur to produce these high impacts. In addition, it is noted that the low wind speeds (less than 2m/s) seen in the data are not associated with these maxima. This could be a result of the chosen averaging time of the impacts (24 hours) which appear not to be controlled by the occurrences of these lower wind speeds in these simulations. However, for shorter averages or for the topographic setting where persistence of stable/low wind speeds are more likely, the results could be controlled by these conditions.

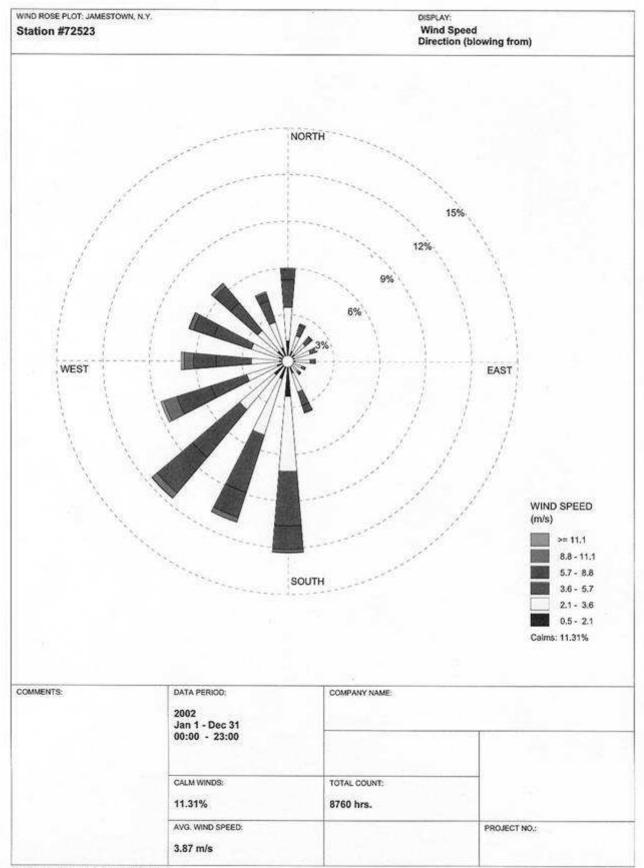
- 4) Raising the stack by 8ft does have a significant effect in reducing impacts of the unit under limited conditions. In order for the increased stack height to have this effect on ambient impacts, the boiler must be outside the influence of nearby structures; i.e. under the "stand alone" condition. Thus, when the stack is outside the influence zone of nearby or it's own structures, the stack is GEP height and the plume is not affected by downwash considerations. However, this situation does not seem to be found in current practical applications.
- 5) Under the two Phase I emission scenarios tabulated (average and maximum emission rates) the majority of impacts exceed the PM<sub>2.5</sub> standard. The exceptions are the standalone boiler or boiler next to the barn cases with an extended stack height.
- 6) Under the Phase II emission scenarios, all impacts are below the standard regardless of the conditions modeled. The overall maximum is associated with the 1992 Syracuse meteorological data case with the 10ft stack next to the house, with most impacts well below the 35 ug/m³ threshold.
- 7) Modeling indicates that the maximum impacts from any configurations occur 10 to 30 meters from the stack (see Appendix A). Thus, to determine the spatial extend of impact areas above the standard and the associated concentration gradients, a number of graphs were generated for the Jamestown 2002 meteorological data model results and under sample scenarios. The results are presented in Figures 1 to 4 for cases 1a, 1b, 2a and 2b, respectively, all for the existing unit emission rate scenarios. Note that the scale for Figure 2 is different than for the rest to allow the depiction of all the results to be discussed. It is seen that the spatial extent of the impacts above 35 ug/m<sup>3</sup> is rather limited, with a sharp drop off beyond 100m from the stack. These impacts, however, do not include background PM2.5 levels. For the Phase I emissions scenarios, impact areas above the NAAQS are reduced, with no such areas projected for the Phase II emissions. Modeling for larger than 350,000 Btu units or several units in one geographic area was not conducted. However, these results indicate that potential for significant cumulative short term impacts due to a number of these boilers in a given area is limited to instances of "adjacent" multiple configurations. On the other hand, it is likely that for long-term or annual basis, cumulative impacts could be associated with multiple units over larger areas due to influence of wind direction frequencies.
- 8) The influence of nearby terrain has been modeled only to the extent of plume "impaction" on relatively small features in the vicinity of the stack. The simulation of terrain effects, especially with close in receptors and potential for impaction, is deemed problematic for these low level sources. Thus, the limited modeled impacts associated with these features are comparable to those with structure downwash effects, especially with the higher stack case

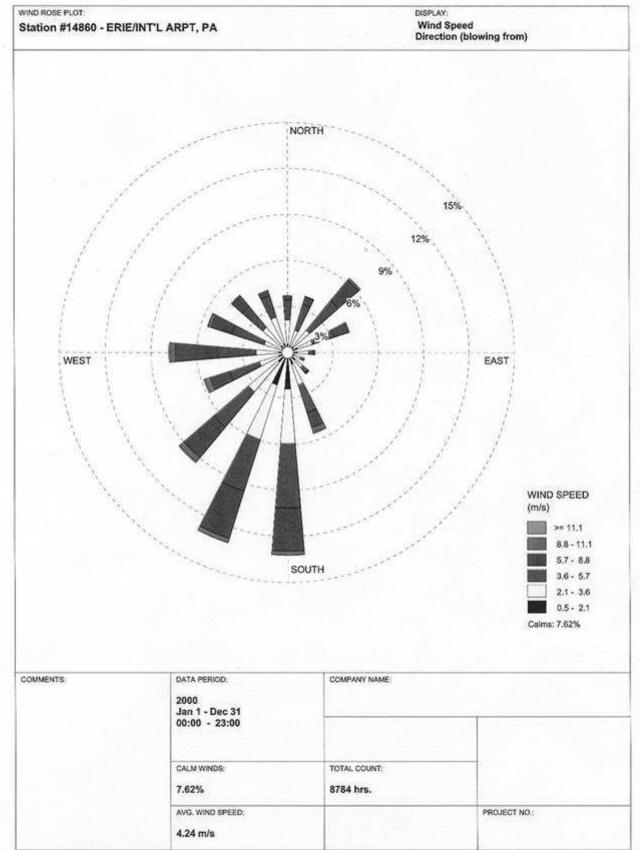
which does not really sense the terrain influence. A proper assessment of the significance of terrain effects is thought to be the instance of persistent low wind speed case in a well defined valley situation which could lead to accumulation of concentrations, but that scenario cannot be simulated for the source specific configurations considered here by the AERMOD model. It is noted that the maxima 24 hour impacts associated with the scenarios were not due to very low wind speed cases, some of which are found in the wind roses from all three sites, but this is likely due to low persistence of these winds in the data sets and the corresponding averaging time for the concentrations, as discussed above. Thus, these results are a good representation of worst-case 24 hour impacts, at least for single source simulations.

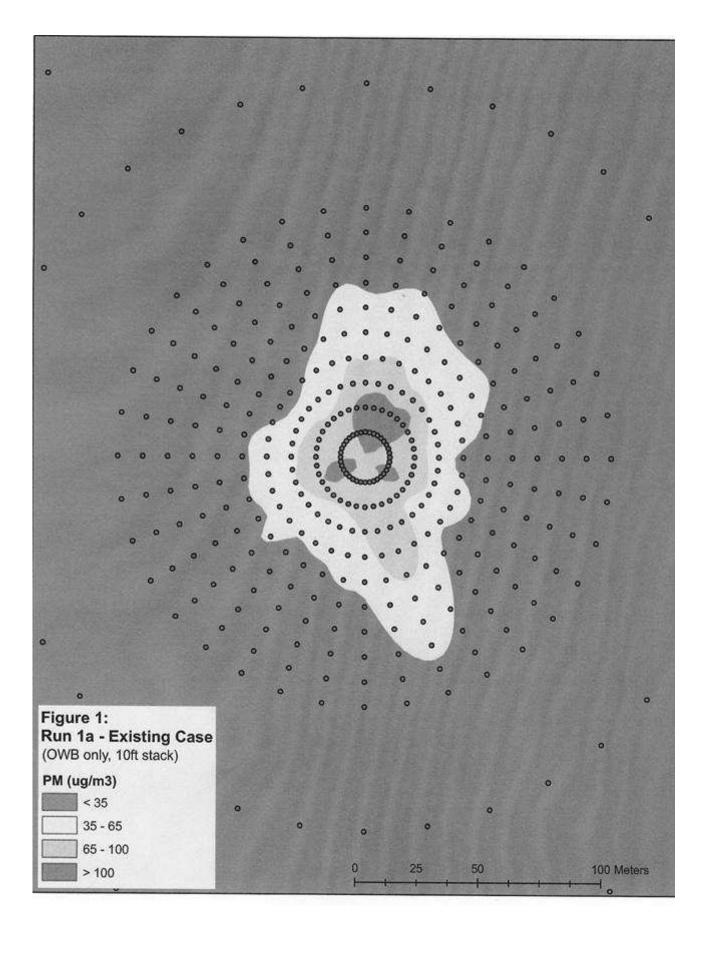
- 9) To test the influence of the stack configuration with respect to the nearby structure orientation, at least two additional runs were performed: one with a different horizontal house dimension facing the stack, using the 2000 data from Erie, and another with the house placed due west of the stack, instead of due east, but at the same distance and with 2002 Jamestown data. The first test resulted in somewhat higher impact of 209 ug/m³ (case 2h of Appendix A) versus the 178 ug/m³ for case 2c of Table 1, while the second test resulted in a comparable increased to 199 ug/m³ (case 2r in Appendix A) versus the 159 ug/m³ impact for case 2a of Table 1. Thus, it is important that these results be used to draw general conclusions and not for absolute demonstration of standards compliance.
- 10) To test the influence of meteorological year variability on the conclusions reached, five years of Syracuse data were analyzed. These data were modeled for the worst case scenario of a woodboiler next to the house with a 10ft stack height, as well as the configurations of a 18 ft stack next to a house and in a stand alone mode (GEP stack). The maximum 24 hour impacts are summarized in Tables 4 and are detailed in the two tables that follow in Appendix A for the existing emissions conditions (the corresponding 8<sup>th</sup> highest impacts are also presented in Tables 5). The use of five years of data results in a range of impacts which differ from the average by about 20 to 30%, depending on the emission scenario, but do not significantly alter the conclusions reached previously. The use of 5 years of data will likely result in higher impacts for the other two sites of meteorological data, but the results for the Phase II emission scenario are not expected to be above the 35 ug/m³ threshold based on the variability seen.
- 11) The last conclusion is further supported by the testing done to determine the consequences of using the 8<sup>th</sup> highest PM<sub>2.5</sub> impact to represent the 98% of the 24 hour values for comparison to the form of the standard. This testing was done with the Syracuse 1992 data for all scenarios of Table 1, except the terrain cases, and for all five years of Syracuse data for the same cases modeled in the meteorological data variability runs discussed above. These results are presented in Tables 3 and in the tables on the pages which follow it in Appendix A. The general conclusion reached from these results is that the use of the 8<sup>th</sup> highest impacts would result in roughly 1/4 to 1/3 lower impacts than the use of the maxima presented previously. However, the conclusions noted above relative to the standard are not significantly affected, although the cases of exceedences of the standard under the Phase I emissions are reduced.
- 12) All of the above conclusions are based on the comparison of the source impacts to the standards without consideration of existing background levels. In many instances, this omission

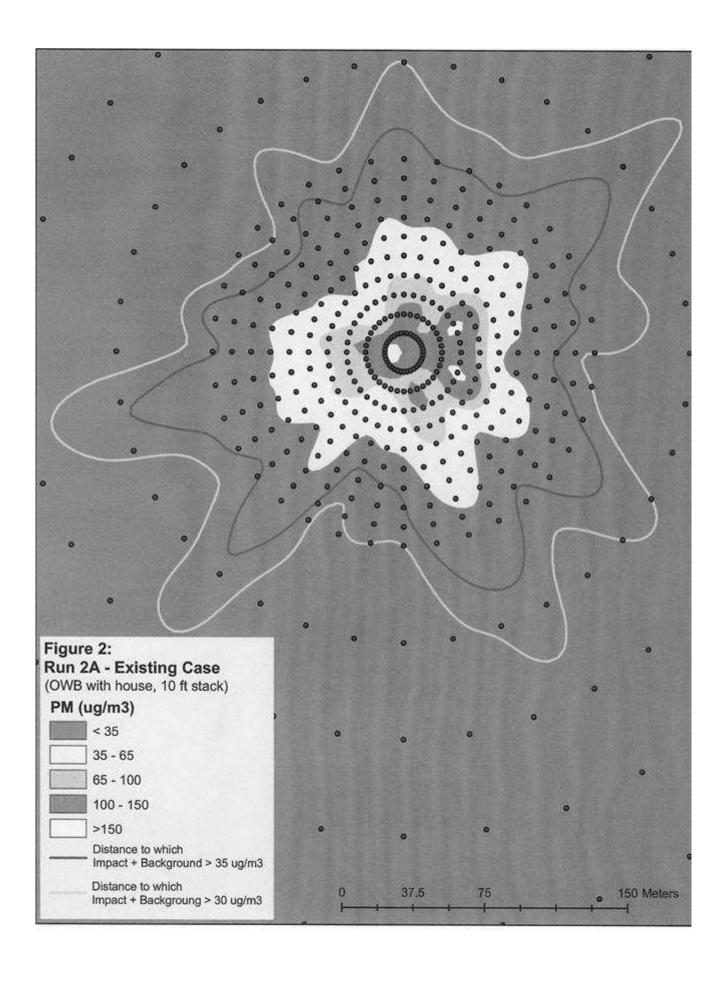
of background levels is of no consequence to the conclusions since the source impacts alone are projected to be above the PM<sub>2.5</sub> standard. However, in two specific aspects a rough estimate of a background level was used to test the influence of ambient background concentrations on the conclusions of this report. These are: in the determination of the areal extent of the impacts above the standard, and in the case of Phase II emission results, which are below the standard without background levels. The consideration of a background level is important for a pollutant such as PM<sub>2.5</sub> that has a relatively consistent and large regional transport component. For this purpose, however, it was decided to use an average representation of 24 hour background levels that could be associated with a random day of potential high impacts from the woodboiler and not to use worst case background levels which are conservatively used in general permit modeling analysis. Thus, the average daily value of 15 ug/m<sup>3</sup> was used for this analysis, which represents the average yearly background levels observed in New York over the last few years. It is also believed that this level fairly represents the contribution of regional transport component to the levels of daily averages.

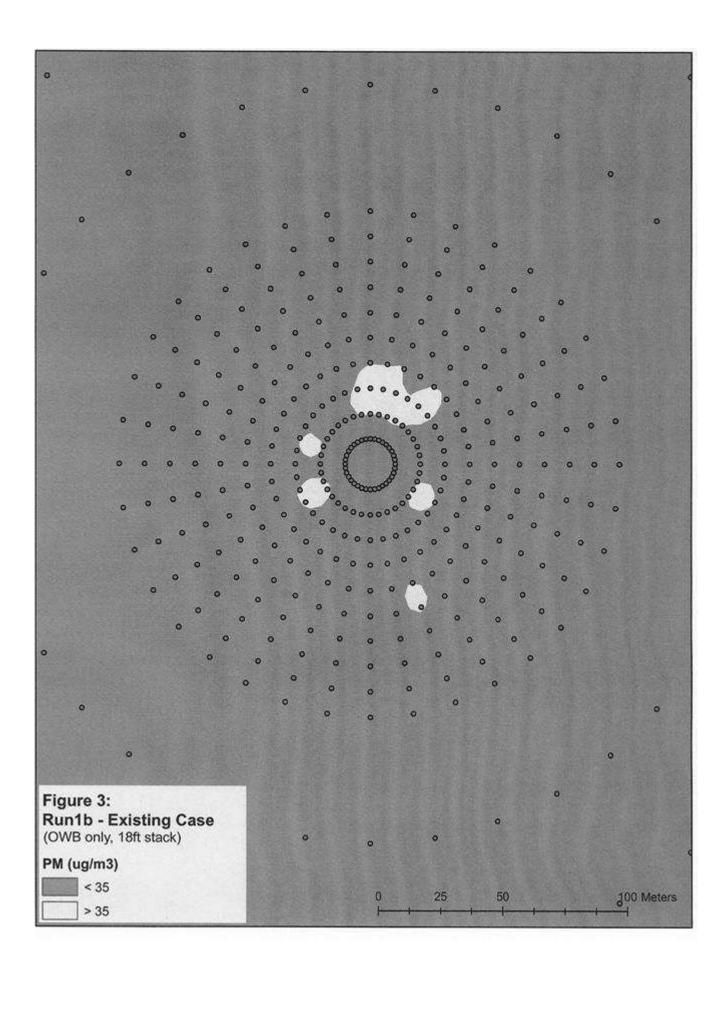
Using this background level, isopleths of total impacts (woodboiler plus background) for the controlling scenario of a 10ft stack next to a house are plotted in Figures 5 to 7 for the existing, the maximum Phase I, and Phase II emission rates, respectively. Figure 7 indicates that with the background concentration included, no exceedences of the 35 ug/m³ level would occur for the Phase II emission limit. Comparing the results in Figure 5 to Figure 2 for the same worst case controlling impact scenario, it is seen that the projected maximum distance to impacts above the PM<sub>2.5</sub> standard is extended from 100 to about 150m with the inclusion of a background level. A simpler way to view this result on the same map is to plot an isopleth of the standard minus the background level (i.e. 20 ug/m³) on the figure with the boiler only impacts, as depicted by the darker blue line in Figure 2 (i.e. the outline of this line corresponds exactly to the distance to the areas below the standard depicted in Figure 5). This revised estimate of distance to total impacts above the PM<sub>2.5</sub> standard still represents a rather localized impact zone. As Phase I and Phase II emissions are implemented, these areas will shrink or become non-existent, accordingly, as depicted in Figures 6 and 7, respectively.

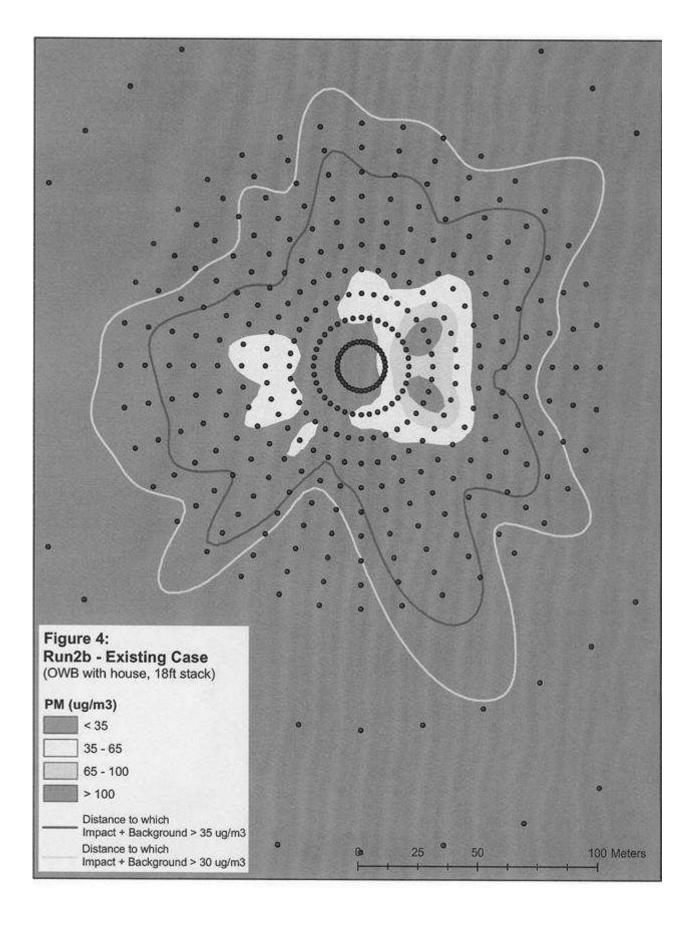

An additional depiction in Figures 2 and 4 are the lighter blue lines, and in Figures 5 and 6, the "hatched" area, which show the extent of impacts above a value of 30 ug/m<sup>3</sup>, the level supported by CASAC and NESCAUM for the 24 hour PM2.5 standard. As noted above, Figures 5 and 6 contain the regional background level in the total impacts. These areas further extend the distance to which the OWBs have an impact over the 30 ug/m<sup>3</sup> value, although the extended impact areas are of the same general magnitude noted previously.


In summary, the modeling analysis undertaken by NYSDEC was developed to determine the range of maximum projected impacts of various particulate matter emissions rates from OWBs under various configurations and scenarios. This data will be used to inform policy makers on the potential impacts of various emission standards. The results of the modeling demonstrate that under current emission rates, as well as the proposed Phase I emission limit, there will be localized exceedences of EPA's 24 hour PM<sub>2.5</sub> standard. In order to avoid exceedences of EPA's 24 hour PM<sub>2.5</sub> standard, units must move to emission rates proposed in Phase II of NESCAUM's model rule.

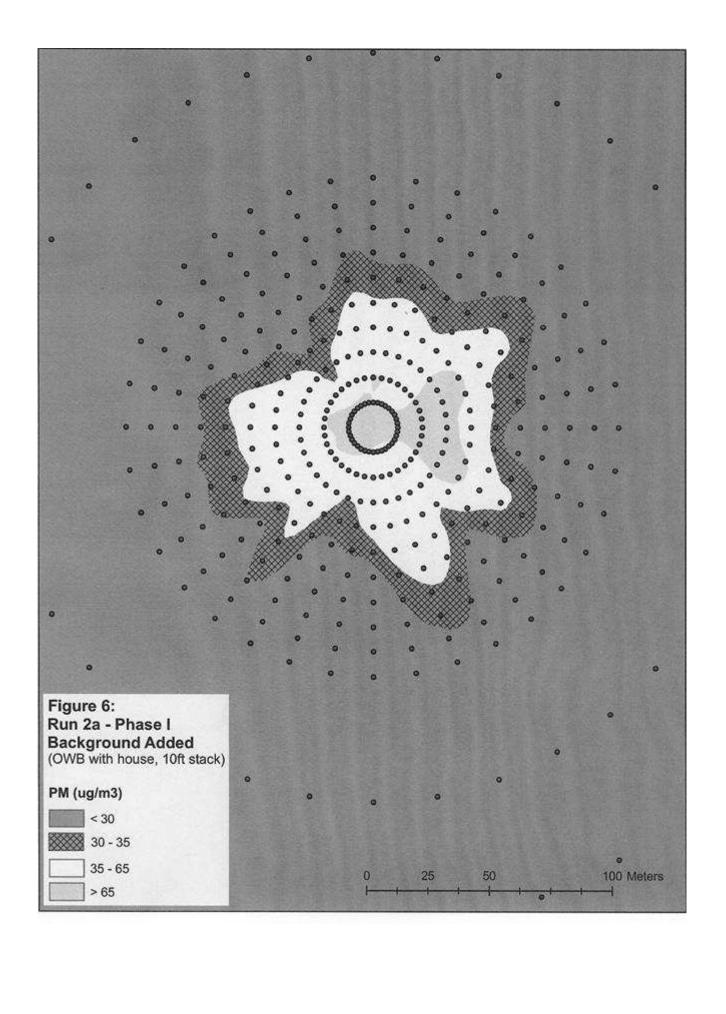

| Modeled                                          | Jamest           | own I             | Met Da       | Jamestown Met Data(2002) | Erie,                           | PA M                 | et Dat      | Erie, PA Met Data(2000) | Syra          | cuse N                      | Syracuse Met Data                                          | 23                      |
|--------------------------------------------------|------------------|-------------------|--------------|--------------------------|---------------------------------|----------------------|-------------|-------------------------|---------------|-----------------------------|------------------------------------------------------------|-------------------------|
| Conditions<br>(Case)                             | Existing<br>Rate | Phase I<br>Ave. M | se I<br>Max. | Phase II<br>Rate         | Existing Phase I<br>Rate Ave. N | Phase I<br>Ave. Max. | e I<br>Max. | Phase II<br>Rate        | Existing Rate | /Max of 5 Phase I Ave. Max. | (1992 /Max of 5 Years<br>cisting Phase I Phate Ave. Max. R | rrs<br>Phase II<br>Rate |
| Stack=10ft, flat terrain,<br>stand alone (1a)    | 123              | 32                | 53           | 111                      | 120                             | 32                   | 52          | п                       | 611           | 32                          | 99                                                         | =                       |
| Stack=10ft, flat terrain,<br>next to house (2a)  | 159              | 42                | 69           | 15                       | 178                             | 47                   | 77          | 16                      | 246**         | 99                          | 104                                                        | 22                      |
| Stack=10ft, flat terrain,<br>next to barn (3a)   | 104              | 72                | 45           | 10                       | 103                             | 27                   | 4           | 10                      | 81            | 22                          | 34                                                         | 7                       |
| Stack=18ft, flat terrain,<br>stand alone (1b)    | 42               | 11                | 18           | 4                        | 40                              | 11                   | 17          | 4                       | 40/55         | 11/15                       | 17/23                                                      | 4/6                     |
| Stack=18ft, flat terrain,<br>next to house (2b)  | 118              | 31                | 51           | 11                       | 83                              | 22                   | 36          | 8                       | 106/137       | 28/36                       | 45/58                                                      | 9/12                    |
| Stack=18ft, flat terrain,<br>next to barn (3b)   | 69               | 18                | 30           | 9                        | 64                              | 17                   | 28          | 9                       | 99            | 17                          | 27                                                         | 9                       |
| Stack=10ft, terrain<br>feature, stand alone (1f) | 159              | 42                | 69           | 15                       | 137                             | 36                   | 59          | 13                      | 163           | 43                          | 69                                                         | 15                      |
| Stack=10ft, terrain<br>feature, next to house-2j | 156              | 41                | 19           | 15                       | 168                             | 44                   | 72          | 16                      | 223           | 09                          | 94                                                         | 20                      |

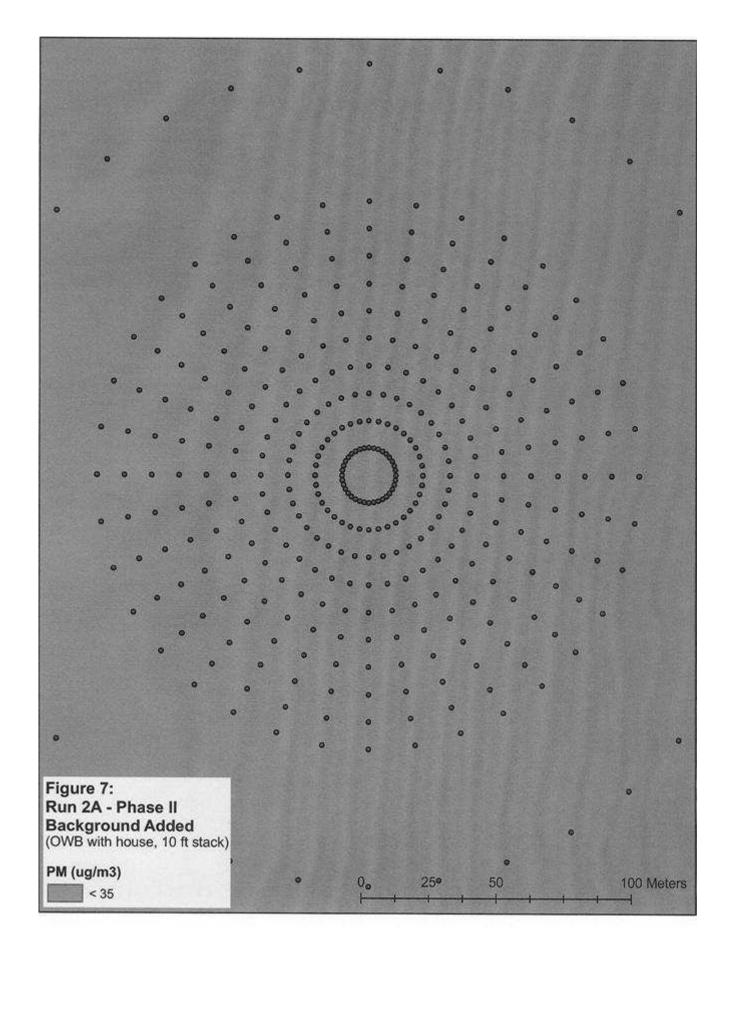

NOTE: Emission rates are as follows: Existing case: 161 g/hr (0.0447g/s), Phase I: Average=43g/hr (0.0119g/s) and Maximum=70g/hr (0.0194g/s), Phase II: 15g/hr (0.00417g/s).


\*\* Maximum occurred with 1992 data for the 5 years modeled.
















# APPENDIX A: DETAILS OF MODELING RESULTS

# Summary of Results-Outdoor wood boiler impact assessment using AERMOD

OWB dimensions: 4 ft x 6 ft x 6.7 ft hgt., stack diameter 6 inches House dimensions: 15m x 20m x 6m hgt., located 7m from stack Barn dimensions: 25m x 30m x 13m hgt., located 7m from stack Stack velocity = 1.05 m/s (weighted average of 0.74 m/s 75% of time and 1.98 m/s 25% of time)

Stack temperature = 294°F (weighted average of 228°F 75% of time and 491°F 25% of time)

Existing: 0.045 g/s All model runs done with unitized emission rate of 1 g/s, then scaled to various rates as follows: Phase Laverage 0.012 g/s Phase I max 0.019 g/s Phase It- 0.004 g/s

Meteorology data: Jamestown, NY 2002 w/Buffalo NY upper-air (JHW) Erie, PA 2000 w/Buffalo NY upper-air (ERI) Syracuse, NY 1888-1992 w/Buffalo NY upper-air (SYR)

All impact concentrations in µg/m³

 Table 1 - Flat terrain, rural, max 24-hour impacts based on existing emission rate (.045 g/s)

 ERI met
 ERI met
 JHW met
 JHW met
 SYR met
 SYR met
 Run IDs

 OWB only
 120
 4 stack
 10 stack
 10 stack
 11 stack
 0WB only

 OWB w/barn
 103
 64
 104
 69
 81
 65
 OWB w/barn

OWB w/house OWB w/barn ERI met ERI met JHW met JHW met SYR met 10° atack 18° etack 10° atack 18° etack 10° atack 10° at

Table 2 - Slightly hilly terrain, rural, max 24-hour impacts based on existing emission rate (.045 g/s)

| ERI met | ERI met | JHW met | SYR met | Run IDs | ERI met | JHW met | JHW met | JHW met | HT stack | 16' stack | 16

Table 3 - Comparison of 1st and 8th max 24-hour impacts (all with SYR 92 met)

| Emission rates>     | tes> Existing Existing Ph. Lavg Ph. Lavg Ph. L | Existing | Ph. I avg | Ph. Lavg | Ph. I Max | Ph. I Max | . I Max Ph. I Max Phase II | Phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|------------------------------------------------|----------|-----------|----------|-----------|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bidgs/stack heights | 16t Max                                        | 5th Max  | fat Max   | 8th Max  | XIM Max   | NEW WIS   | 1st Max                    | 8th Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1j - OWB only/10"   | 119                                            | 98       | 32        | 24       | 50        | 38        | 11                         | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20 - OWB/house/10"  | 246                                            | 185      | 66        | 49       | 104       | 78        | 22                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3g - OWB/barn/10"   | 81                                             | 63       | 22        | 17       | 34        | 27        | 7                          | thirt sparts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1k - OWB only/18"   | 40                                             | 31       | -11       | 8        | 17        | 13        | 4                          | 4 25 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2p - OWB/house/18"  | 106                                            | 66       | 28        | 18       | 45        | 28        | 8                          | STATE OF THE PARTY |
| 3h - OWB/barn/18'   | 8                                              | 53       |           | 6        | 27        | 9         | 6                          | J. Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Table 4 - Comparison of 1st max 24-hour impacts based on 5 years of met data (SYR 1988-1992)

SYR met year >
OWB/house/10\*
OWB/house/18\*
OWB only/18\*
\*max downwind impact all based on existing emission rate (.045 g/s) 1989 137 55 1990 228\* 98 41 1991 36 84 76 1992 246\* 106

Table 5 - Comparison of 8th max 24-hour impacts based on 5 years of met data (SYR 1988-1992)

all based on existing emission rate (.045 g/s)
SYR met year > 1988 1989
OWB/house/10' 148 165
OWB/house/18' 102 81
OWB only/18' 32 36 1990 157 76 33 1991 159 67 28 1992 185 86

# Details of Model run results - Outdoor wood boiler impact assessment using AERMOD

First round of modeling, testing various building, terrain, and stack height configurations

OWB dimensions: 4 ft x 6 ft x 6.7 ft hgt., stack diameter 6 inches

House dimensions: 15m x 20m x 6m hgt. Barn dimensions: 25m x 30m x 13m hgt.

Stack velocity = 1.05 m/s (weighted average of 0.74 m/s 75% of time and 1.98 m/s 25% of time)
Stack temperature = 294°F (weighted average of 228°F 75% of time and 491°F 25% of time)

All model runs done with unitized emission rate of 1 g/s, then scaled to existing emission rate of 0.045 g/s

## Meteorology data:

Jamestown, NY 2002 w/Buffalo NY upper-air (JHW) Erie, PA 2000 w/Buffalo NY upper-air (ERI)

Table lists 1st and 2nd max 24-hour impacts in ug/m3

| Model Run<br>Description | Rank            | Model<br>Output<br>PM2.5 Conc | Scaled<br>Impact<br>Conc*0.045 | Location<br>East(X) | Location<br>North(Y) | Source-<br>receptor<br>elev diff (m)    | Date        |
|--------------------------|-----------------|-------------------------------|--------------------------------|---------------------|----------------------|-----------------------------------------|-------------|
| 1a - OWB only, flat      | terrain, rura   | I, 10 ft stack, J             | HW met                         |                     |                      |                                         |             |
| base case                |                 |                               |                                |                     |                      |                                         |             |
|                          | 1ST             | 2729.3                        | 122.8                          | 12.86               | 15.32                |                                         | 12/27/2002  |
|                          | 2ND             | 2518.9                        |                                | 0.00                | 10.00                | SINE                                    | 9/19/2002   |
| 1b - OWB only, flat      |                 |                               | HW met                         |                     |                      |                                         |             |
| compare to 1a to test    | effect of stack | height extension              |                                |                     |                      |                                         |             |
|                          | 1ST             | 922.0                         | 41.5                           | 0.00                | 30.00                |                                         | 2/19/2002   |
|                          | 2ND             | 812.2                         | 36.5                           | 5.21                | 29.54                |                                         | 1/28/2002   |
| 1c - OWB only, flat      | terrain, rura   | I, 10 ft stack, E             | RI met                         |                     |                      | MADE DE LOS                             |             |
| compare to 1a to test    |                 |                               |                                |                     |                      |                                         |             |
|                          | 1ST             | 2666.9                        | 120.0                          | 0.00                | 20.00                |                                         | 1/1/2000    |
|                          | 2ND             | 2332.2                        |                                | 0.00                | 20.00                |                                         | 11/24/2000  |
| 1d - OWB only, flat      | terrain, rura   | I, 18 ft stack, E             | RI met                         |                     |                      |                                         |             |
| compare to 1b to test    |                 |                               |                                |                     |                      |                                         |             |
|                          | 1ST             | 899.8                         | 40.5                           | -5.21               | 29.54                |                                         | 11/24/2000  |
|                          | 2ND             | 813.9                         |                                |                     | 30.00                |                                         | 11/24/2000  |
| 1f - OWB only, sligh     | htly hilly ten  |                               |                                |                     |                      | CC-2611                                 |             |
| compare to 1a to test    |                 |                               |                                |                     | 103 50               |                                         |             |
|                          | 1ST             | 3542.1                        | 159.4                          | -8.66               | -5.00                | 1.6                                     | 11/16/2002  |
|                          | 2ND             | 2686.5                        |                                | -9.85               | 1.74                 | 1.6                                     | 10/29/2002  |
| 1g - OWB only, slig      | htly hilly ter  |                               |                                |                     |                      |                                         |             |
| compare to 1b to test    |                 |                               |                                |                     |                      |                                         |             |
|                          | 1ST             | 918.4                         | 41.3                           | 0.00                | 30.00                | 0.6                                     | 2/19/2002   |
|                          | 2ND             | 812.4                         |                                | 5.21                | 29.54                | 0.6                                     | 1/28/2002   |
| 1i - OWB only, sligh     | ntly hilly terr |                               |                                | net                 | 2010                 | 0.0                                     | TI ZOI ZOOZ |
| compare to 1c to test e  |                 |                               |                                |                     |                      |                                         |             |
|                          | 1ST             | 3037.5                        | 136.7                          | -8.66               | -5.00                | 1.6                                     | 6/5/2000    |
|                          | 2ND             | 2692.1                        | 121.1                          | -9.40               | -3.42                | 1.6                                     | 1/22/2000   |
| 2a - OWB with hous       | se (15m x 20    |                               |                                |                     |                      |                                         | et          |
| compare to 1a to test    |                 |                               |                                |                     | 1                    |                                         |             |
|                          | 1ST             | 3538.3                        |                                | 28.19               | -10.26               |                                         | 4/5/2002    |
|                          | 2ND             | 3355.8                        | 1.0.0.100                      | 28.19               |                      |                                         | 4/23/2002   |
| 2b - OWB with hou        | se 7m away.     |                               |                                |                     |                      | 100000000000000000000000000000000000000 | 1,20,2002   |
| compare to 2a to test    |                 |                               |                                |                     |                      | 4                                       |             |
|                          | 1ST             | 2622.5                        | 118.0                          | 25.98               | 15.00                |                                         | 12/4/2002   |
|                          | 2ND             | 2489.7                        | 112.0                          | 28.19               | -10.26               | Na Sina                                 | 4/23/2002   |

| 2c - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 10 ft stack   | , ERI met   |                |            |            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-------------|----------------|------------|------------|
| compare to 2a to test eff   | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3946.9               | 477.0         | 0.40        | 7.00           |            | 0/5/000    |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3820.6               | 177.6         | -6.43       | -7.66          |            | 6/5/200    |
| 2d OWD with house           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 171.9         | -7.66       | -6.43          |            | 10/22/2000 |
| 2d - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 18 ft stack   | , ERI met   |                | 197 (2)    |            |
| compare to 2b to test eff   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | 20.40       |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1851.6               | 83.3          | 28.19       | 10.26          |            | 7/4/2000   |
| 0. 000                      | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1837.2               | 82.7          | 25.98       | 15.00          |            | 7/17/2000  |
| 2g - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | k, ERI me   | t              |            |            |
| compare to 2c to test eff   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | 20.51       |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3304.2               | 148.7         | -29.54      | -5.21          |            | 10/22/2000 |
| OL OWD W.L.                 | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2332.2               | 104.9         | 0.00        | 20.00          |            | 11/24/2000 |
| 2h - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | wise, flat to | errain, rur | al, 10 ft sta  | ck, ERI me | it         |
| compare to 2c to test eff   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |             |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4651.1               | 209.3         | -5.00       | -8.66          |            | 6/5/2000   |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3968.8               | 178.6         | -3.42       | -9.40          |            | 5/19/2000  |
| 2j - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lightly hilly terra  | in, rural, 10 | ft stack,   | ERI met        |            |            |
| compare to 2c to test eff   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |             |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3740,4               | 168.3         | -5.00       | -8.66          | 0.6        | 6/5/2000   |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3363.2               | 151.3         | -5.00       | -8.66          | 0.6        | 10/22/2000 |
| 2I - OWB with house         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lightly hilly terra  | in, rural, 10 | ft stack,   | JHW met        |            |            |
| compare to 2a to test eff   | THE REAL PROPERTY AND ADDRESS OF THE PARTY AND |                      | -             |             |                | 1000       |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3470.4               | 156.2         | 28.19       | -10.26         | -0.4       | 4/5/2002   |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3295.8               | 148.3         | 28.19       | -10.26         | -0.4       | 4/23/2002  |
| 3a - OWB with barn (        | 25m x 30m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 13m hgt.) 7m a     | way, flat te  | rrain, rura | d, 10 ft stac  | k, JHW m   | et         |
| compare to 2a to test eff   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | - Charles     |             | En la la Maria |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2299.2               | 103.5         | -3.42       | 9.40           |            | 9/1/2002   |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2187.9               | 98.5          | 0.00        | 10.00          |            | 9/2/2002   |
| 3b - OWB with barn 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               | JHW met     |                |            |            |
| compare to 3a to test       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k height extensio    | 0             |             |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1530.0               | 68.8          | -9.85       | 1.74           |            | 10/29/2002 |
| RESIDENCE OF COLUMN         | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450.1               | 65.3          | 8.66        | 5.00           |            | 10/29/2002 |
| 3c - OWB with barn 7        | m away, fla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | it terrain, rural, 1 | 0 ft stack, I | ERI met     |                |            |            |
| compare to 3a to test       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |             |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2291.4               | 103.1         | 0.00        | 20.00          |            | 12/3/2000  |
|                             | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2060.5               | 92.7          | -1.74       | 9.85           |            | 11/24/2000 |
| 3d - OWB with barn 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 8 ft stack, I | ERI met     |                |            |            |
| compare to 3b to test       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |             |                |            |            |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1424.9               | 64.1          | -6.43       | -7.66          |            | 10/22/2000 |
| Resemble to the second      | 2ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1094.4               | 49.2          | 5.00        | -8.66          | 100000     | 10/5/2000  |
| 2r - OWB & house we         | est of sourc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e, 10 ft stack, fla  | t terrain, Ji | -W 2002 n   | net            |            |            |
| Compare to 2a to test effec | t of moving hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | se to west of source | same distance | )           |                |            | Jan San    |
|                             | 1ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4428.1               | 199.3         | 9.85        | -1.74          | +          | 2/22/2002  |
|                             | 8TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3015.2               | 135.7         | -10.00      | 0.00           |            | 1/11/2002  |

Modeling round #2 - Additional met data set from Syracuse, and comparing 8th max impacts with 1st max Only 1st & 8th max 24-hour impacts modeled with 1992 Syracuse data

|                                                                                                                                |             | Model             | Scaled to           | Scaled to           | Scaled to           | Scaled to        |                     |                     | Source-                   |            |
|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|---------------------|---------------------|---------------------|------------------|---------------------|---------------------|---------------------------|------------|
| Model Kun  Description                                                                                                         | Rank        | PM2.5 Conc        | 0.045<br>(Existing) | 0.012<br>(Ph 1 avg) | 0.019<br>(Ph 1 max) | 0.004<br>(Ph II) | Location<br>East(X) | North(Y)            | receptor<br>elev diff (m) | Date       |
| 1j - OWB only, 10 ft stack, flat terrain, SYR 1992 met                                                                         | flat terra  | in, SYR 1992      | met                 |                     |                     |                  |                     |                     |                           |            |
| Compare to 1a to test effect of different met                                                                                  | erent met   |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST         | 2641.7            | 118.9               | 31.7                | 50.2                | 10.6             | -9.40               | 3.42                |                           | 8/16/1992  |
|                                                                                                                                | 8TH         | 2002.4            | 90.1                | 24.0                | 38.0                | 8.0              | -10.00              | 0.00                |                           | 11/2/1992  |
| 2o - OWB & house, 10 ft stack, flat terrain, SYR 1992 met                                                                      | ack, flat   | terrain, SYR      | 1992 met            |                     |                     |                  |                     |                     |                           |            |
| Compare to 2a to test effect of different met                                                                                  | erent met   |                   |                     |                     | Aug Children        |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST*        | 5475.7            | 246.4               | 65.7                | 104.0               | 21.9             | -9.40               | 3.42                |                           | 1/27/1992  |
|                                                                                                                                | HT8         | 4109.1            | 184.9               | 49.3                | 78.1                | 16.4             | -8.66               | 5.00                |                           | 2/18/1992  |
| *1st max impact from model was upwind of source and "inside" house - replaced it with highest downwind receptor, which had max | pwind of so | urce and "inside" | house - repla       | ced it with high    | hest downwind       | receptor, whi    |                     | impact on same date | date                      |            |
| 3g - OWB & barn, 10 ft stack, flat terrain, SYR 1992 met                                                                       | ck, flat te | rrain, SYR 19     | 992 met             |                     |                     |                  |                     |                     |                           |            |
| Compare to 3a to test effect of different met                                                                                  | ent met     |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST         | 1809.0            | 81.4                | 21.7                | 34.4                | 7.2              | 0.00                | -10.00              |                           | 11/1/1992  |
|                                                                                                                                | HT8         | 1399.2            | 63.0                | 16.8                | 26.6                | 5.6              | -1.74               | -9.85               |                           | 8/17/1992  |
| 1k - OWB only, 18 ft stack, flat terrain, SYR 1992 met                                                                         | flat terra  | in, SYR 1992      |                     |                     |                     |                  |                     |                     |                           |            |
| Compare to 1b to test effect of different met                                                                                  | ent met     |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST         | 879.3             | 39.6                | 10.6                | 16.7                | 3.5              | -29.54              | 5.21                |                           | 1/27/1992  |
|                                                                                                                                | HT8         | 684.7             | 30.8                | 8.2                 | 13.0                | 2.7              | -29.54              | 5.21                |                           | 10/8/1992  |
| 2p - OWB & house, 18 ft stack, flat terrain, SYR 1992 met                                                                      | ack, flat   | terrain, SYR      | 1992 met            |                     |                     |                  |                     |                     |                           |            |
| Compare to 2b to test effect of different met                                                                                  | rent met    |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | TS1         | 2349.5            | 105.7               | 28.2                | 44.6                | 9.4              | 29.54               | 5.21                |                           | 11/28/1992 |
|                                                                                                                                | HT8         | 1474.8            | 66.4                | 17.7                | 28.0                | 5.9              | 30.00               | 0.00                |                           | 9/28/1992  |
| 3h - OWB & barn, 18 ft stack, flat terrain, SYR 1992 met                                                                       | ж, flat te  | rrain, SYR 19     | 92 met              |                     |                     |                  |                     |                     |                           |            |
| Compare to 3b to test effect of different met                                                                                  | rent met    |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST         | 1436.6            | 64.6                | 17.2                | 27.3                | 5.7              | -9.40               | 3.42                |                           | 1/27/1992  |
|                                                                                                                                | HT8         | 1182.7            | 53.2                | 14.2                | 22.5                | 4.7              | -9.85               | 1.74                |                           | 10/15/1992 |
| 11 - OWB only, 10 ft stack, slightly hilly terrain, SYR 1992 met                                                               | slightly h  | nilly terrain, S  | SYR 1992 n          | net                 |                     |                  |                     |                     |                           |            |
| Compare to 1f to test effect of different met                                                                                  | rent met    |                   |                     |                     |                     |                  |                     |                     |                           |            |
|                                                                                                                                | 1ST         | 3613.7            | 162.6               | 43.4                | 68.7                | 14.5             | -9.85               | 1.74                | 1.6                       | 1/27/1992  |
|                                                                                                                                | HT8         | 2894.1            | 130.2               | 34.7                | 55.0                | 11.6             | -9.85               | 1.74                | 1.6                       | 2/18/1992  |
| 2q - OWB & house, 10 ft stack, slightly hilly terrain,                                                                         | ack, sligi  | ntly hilly terra  | ain, SYR 19         | SYR 1992 met        |                     |                  |                     |                     |                           |            |
| Compare to 2j to test effect of different met                                                                                  | ent met     |                   |                     |                     |                     |                  |                     |                     |                           |            |
| 76                                                                                                                             | 1ST         | 4965.4            | 223.4               | 59.6                | 94.3                | 19.9             | -9.85               | 1.74                | 0.6                       | 1/27/1992  |
|                                                                                                                                | HT8         | 3899.7            | 175.5               | 46.8                | 74.1                | 15.6             | 10.00               | 0.00                | 0.6                       | 8/16/1992  |

<sup>\*1</sup>ST max impact from model was upwind of source and "inside" house - replaced it with highest downwind receptor, which had max impact on same date

5-year met data sensitivity tests
Syracuse 1988-1992 met data used to test interannual variability of impacts
1st & 8th max 24-hour impacts (µg/m³) based on existing emission rate (.045 g/s)

|         | 1988 | 1989 | 1990 | 1991 | 1992 |  |
|---------|------|------|------|------|------|--|
| 1st Max | 217* | 203* | 228* | 176  | 246* |  |
| 8th Max | 148  | 165  | 157  | 159  | 185  |  |

|         | 0 / 0010 01 01 | it iiiot aata | ************* | tab lama | w mouse, | 18 ft stack, flat terrain) |
|---------|----------------|---------------|---------------|----------|----------|----------------------------|
|         | 1988           | 1989          | 1990          | 1991     | 1992     |                            |
| 1st Max | 136            | 137           | 98            | 84       | 106      |                            |
| 8th Max | 102            | 81            | 76            | 67       | 66       |                            |

| Run 1m - Test 5 y | ears of S | YR met dat | a with 1b s | etup (OWE | 3 only, 11 |
|-------------------|-----------|------------|-------------|-----------|------------|
|                   | 1988      | 1989       | 1990        | 1991      | 1992       |
| 1st Max           | 45        | 55         | 41          | 36        | 40         |
| 8th Max           | 32        | 36         | 33          | 28        | 31         |

| Detailed | output from 5-ye | ear met tests |       |      |       | 5    | Scaled conc |          |          |          |           |
|----------|------------------|---------------|-------|------|-------|------|-------------|----------|----------|----------|-----------|
| File     | Pol              | Average       | Group | Rank | Conc. |      | (.045)      | East(X)  | North(Y) | Time     | Met File  |
| 2s_88_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST* |       | 4817 | 217         | 7 -9.85  | 1.74     | 88010824 | SYR88.SFC |
| 2s_88_P  | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 3300 | 148         | 30.00    | 0.00     | 88091024 | SYR88.SFC |
| 2s_89_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST* |       | 4515 | 203         | -10.00   | 0.00     | 89032424 | SYR89.SFC |
| 2s_89_P  | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 3675 | 165         | 9.85     | 1.74     | 89022624 | SYR89.SFC |
| 2s_90_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST* |       | 5077 | 228         | 9.85     | 1.74     | 90033124 | SYR90.SFC |
| 2s_90_P  | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 3497 | 157         | 7 -9.40  | 3.42     | 90082124 | SYR90.SFC |
| 2s_91_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST  |       | 3915 | 176         | -7.66    | 6.43     | 91021824 | SYR91.SFC |
| 2s_91_P  | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 3547 | 160         | -8.66    | 5.00     | 91042824 | SYR91.SFC |
| 2s_92_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST* |       | 5573 | 246         | 9.40     | 3.42     | 92012724 | SYR92.SFC |
| 2s_92_P  | M2.5 PM2.5       | 24-HR         | ALL   | 8ТН  |       | 4109 | 185         | -8.66    | 5.00     | 92021824 | SYR92.SFC |
|          |                  |               |       |      |       |      | Scaled Conc | ft.      |          |          |           |
| File     | Pol              | Average       | Group | Rank | Conc. |      | (.045)      | East(X)  | North(Y) | Time     | Met File  |
| 2t_88_Pt | M2.5. PM2.5      | 24-HR         | ALL   | 1ST  |       | 3029 | 136         | 3 25.98  | 15       | 88102524 | SYR88.SFC |
| 21_88_PI | M2.5. PM2.5      | 24-HR         | ALL   | 8TH  |       | 2274 | 102         | 2 30     | 0        | 88061124 | SYR88.SFC |
| 2t_89_Pt | M2.5 PM2.5       | 24-HR         | ALL   | 1ST  |       | 3055 | 137         | 7 30     | 0        | 89080324 | SYR89.SFC |
| 21_89_PI | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 1799 | 8           | 1 30     | 0        | 89100624 | SYR89.SFC |
| 2t_90_P  | M2.5. PM2.5      | 24-HR         | ALL   | 1ST  |       | 2185 | 98          | 3 30     | 0        | 90062524 | SYR90.SFC |
| 2t_90_Pt | M2.5. PM2.5      | 24-HR         | ALL   | 8TH  |       | 1694 | 76          | 3 29.54  | -5.21    | 90082724 | SYR90.SFC |
| 2t_91_P  | M2.5 PM2.5       | 24-HR         | ALL   | 1ST  |       | 1874 | 84          | 4 30     | 0        | 91061124 | SYR91.SFC |
| 2t_91_P  | M2.5. PM2.5      | 24-HR         | ALL   | 8TH  |       | 1495 | 6           | 7 30     | 0        | 91111224 | SYR91.SFC |
| 21_92_PI | M2.5 PM2.5       | 24-HR         | ALL   | 1ST  |       | 2349 | 106         | 3 29.54  | 5.21     | 92112824 | SYR92.SFC |
| 2t_92_Pt | M2.5 PM2.5       | 24-HR         | ALL   | 8TH  |       | 1475 | 66          | 30       | 0        | 92092824 | SYR92.SFC |
|          |                  |               |       |      |       | 5    | Scaled Cond |          |          |          |           |
| File     | Pol              | Average       | Group | Rank | Conc. |      | (.045)      | East(X)  | North(Y) | Time     | Met File  |
| 1m_88_I  | PM2.: PM2.5      | 24-HR         | ALL   | 1ST  |       | 1006 | 45          | 5 -30    | 0        | 88051924 | SYR88.SFC |
| 1m_88_F  | PM2.! PM2.5      | 24-HR         | ALL   | 8TH  |       | 703  | 33          | 2 -28.19 | 10.26    | 88051924 | SYR88.SFC |
| 1m_89_l  | PM2.! PM2.5      | 24-HR         | ALL   | 1ST  |       | 1225 | 55          | -29.54   | 5.21     | 89091624 | SYR89.SFC |
| 1m_89_8  | PM2./ PM2.5      | 24-HR         | ALL   | 8TH  |       | 807  | 36          | 3 -29.54 | 5.21     | 89121524 | SYR89.SFC |
| 1m_90_6  | PM2.: PM2.5      | 24-HR         | ALL   | 1ST  |       | 909  | 4           | 1 -18.79 | 6.84     | 90082124 | SYR90.SFC |
| 1m_90_l  | PM2.: PM2.5      | 24-HR         | ALL   | 8TH  |       | 734  | 33          | 3 -29.54 | 5.21     | 90101024 | SYR90.SFC |
| 1m_91_I  | PM2.: PM2.5      | 24-HR         | ALL   | 1ST  |       | 804  | 36          | 6 -19.7  | 3.47     | 91070224 | SYR91.SFC |
| 1m_91_I  | PM2.: PM2.5      | 24-HR         | ALL   | 8TH  |       | 618  | 28          | 3 -29,54 | 5.21     | 91090924 | SYR91.SFC |
| 1m_92_1  | PM2./ PM2.5      | 24-HR         | ALL   | 1ST  |       | 879  | 40          | -29.54   | 5.21     | 92012724 | SYR92.SFC |
| 1m_92 I  | PM2.: PM2.5      | 24-HR         | ALL   | 8TH  |       | 685  | 3           | 1 -29.54 | 5.21     | 92100824 | SYR92.SFC |

# APPENDIX B: METEOROLOGICAL DATA FOR SELECT DAYS ASSOCIATED WITH MAXIMUM IMPACTS

| Ja | ame | stov | vn: | 2002    |          |          |     |          |          | impactin | g wind | direction | n = 220 |     |     |     |       |     |    |    |    |     |   |
|----|-----|------|-----|---------|----------|----------|-----|----------|----------|----------|--------|-----------|---------|-----|-----|-----|-------|-----|----|----|----|-----|---|
| Y  | M   | D    | H   | ht flux | fric vel | conv vel | ptg | conv mix | mech mix | M-O      | rough  | Bowen     | albedo  | spd | dir | hgt | t(K)  | hgt |    |    |    |     |   |
| 2  | 12  | 27   | 1   | -30.3   | 0.535    | -9       | -9  | -999     | 900      | 433.6    | 0.361  | 1.5       | 1       | 4.6 | 240 | 10  | 267   | 2   | 0  | -9 | 86 | 961 | 1 |
| 2  | 12  | 27   | 2   | -30.3   | 0.535    | -9       | -9  | -999     | 901      | 433.6    | 0.361  | 1.5       | 1       | 4.6 | 232 | 10  | 267   | 2   | 0  | -9 | 86 | 961 | 1 |
| 2  | 12  | 27   | 3   | -26.9   | 0.473    | -9       | -9  | -999     | 751      | 336.5    | 0.361  | 1.5       | 1       | 4.1 | 234 | 10  | 265.9 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 4   | -19.6   | 0.344    |          |     | -999     | 475      | 178.6    | 0.361  | 1.5       | 1       | 3.1 | 215 | 10  | 265.9 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 5   | -19.6   | 0.344    | -9       | -9  | -999     | 465      | 178.6    | 0.361  | 1.5       | 1       | 3.1 | 221 | 10  | 265.9 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 6   | -26.9   | 0.473    | -9       | -9  | -999     | 747      | 336.5    | 0.361  | 1.5       | 1       | 4.1 | 225 | 10  | 265.9 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 7   | -26.9   | 0.473    | -9       | -9  | -999     | 747      | 336.5    | 0.361  | 1.5       | 1       | 4.1 | 216 | 10  | 265.9 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 8   | -26.9   | 0.473    | -9       | -9  | -999     | 747      | 335.6    | 0.361  | 1.5       | 1       | 4.1 | 241 | 10  | 265.4 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 9   | -18.7   | 0.414    | -9       | -9  | -999     | 616      | 326.3    | 0.361  | 1.5       | 0.76    | 3.6 | 214 | 10  | 265.4 | 2   | 0  | -9 | 93 | 961 | 1 |
| 2  | 12  | 27   | 10  | 0.1     | 0.434    | -9       | -9  | -999     | 656      | -8888    | 0.361  | 1.5       | 0.64    | 3.6 | 222 | 10  | 265.4 | . 2 | 0  | -9 | 90 | 961 | 1 |
| 2  | 12  | 27   | 11  | 0.1     | 0.373    | -9       | -9  | -999     | 527      | -8888    | 0.361  | 1.5       | 0.59    | 3,1 | 231 | 10  | 265.4 | 2   | 22 | -9 | 86 | 961 | 1 |
| 2  | 12  | 27   | 12  | 1.5     | 0.375    | -9       | -9  | -999     | 528      | -3011.8  | 0.361  | 1.5       | 0.57    | 3.1 | 238 | 10  | 265.9 | 2   | 0  | -9 | 73 | 960 | 1 |
| 2  | 12  | 27   | 13  | 2.4     | 0.375    | -9       | -9  | -999     | 529      | -1921.2  | 0.361  | 1.5       | 0.57    | 3,1 | 243 | 10  | 265.9 | 2   | 0  | -9 | 79 | 959 | 1 |
| 2  | 12  | 27   | 14  | 0.4     | 0.434    | -9       | -9  | -999     | 657      | -8888    | 0.361  | 1.5       | 0.57    | 3.6 | 232 | 10  | 265.9 | 2   | 0  | -9 | 86 | 958 | 1 |
| 2  | 12  | 27   | 15  | 4.4     | 0.556    | -9       | -9  | -999     | 952      | -3355.5  | 0.361  | 1.5       | 0.6     | 4.6 | 252 | 10  | 267   | 2   | 0  | -9 | 80 | 958 |   |
| 2  | 12  | 27   | 16  | -5.6    | 0.366    | -9       | -9  | -999     | 537      | 751.1    | 0.361  | 1.5       | 0.67    | 3.1 | 230 | 10  | 267   | 2   | 0  | -9 | 80 | 958 |   |
| 2  | 12  | 27   | 17  | -22.1   | 0.34     | -9       | -9  | -999     | 456      | 151.6    | 0.361  | 1.5       | 0.86    | 3.1 | 246 | 10  | 265.9 | 2   | 0  | -9 | 86 | 958 |   |
| 2  | 12  | 27   | 18  | -27.3   | 0.404    | -9       | -9  | -999     | 591      | 206.7    | 0.361  | 1.5       | 1       | 3.6 | 241 | 10  | 265.9 | 2   | 0  | -9 | 86 | 958 |   |
|    |     |      |     |         |          |          |     |          |          |          |        |           |         |     |     |     |       |     |    |    |    |     |   |

87 0.361

115.8 0.361

109.1 0.361

178 0.361

277 0.361

41.6 0.361

1.5

1.5

1.5

1.5

1.5

1.5

2

1 4.1 210 10 265.4 2 0 -9 93 957 5

1 4.1 207 10 265.4 2 0 -9 93 956 9

0 -9 86 958

2 0 -9 90 957 3

2 0 -9 93 957 0

2 0 -9 93 956 3

1 3.1 211 10 265.4

1 3.6 210 10 265.4

1 3.6 198 10 265.4

1 2.6 220 10 265.4

Met for 2nd max 24-hr impact, case 1a (hs=10ft,JHW) - max impact was at 0E, 10N

-9 -9

-9 -9

-9 -9

-9 -9

-9 -9

-9 -9

-999

-999

-999

-999

-999

-999

417

546

541

706

737

305

2 12 27 19 -31.6 0.318

2 12 27 20 -41.6 0.384

2 12 27 21 -43.2 0.381

2 12 27 22 -45.2 0.455

2 12 27 23 -31.6 0.468

2 12 27 24 -24.9 0.23

|   |   |    |    |         |          |          |     |          |          | impactin | ng wind | direction | on = 180 | )   |     |     |       |     |   |    |    |     |    |
|---|---|----|----|---------|----------|----------|-----|----------|----------|----------|---------|-----------|----------|-----|-----|-----|-------|-----|---|----|----|-----|----|
| Y | M | D  | H  | ht flux | fric vel | conv vel | ptg | conv mix | mech mix | M-O      | rough   | Bowen     | albedo   | spd | dir | hgt | t(K)  | hgt |   |    |    |     |    |
| 2 | 9 | 19 | 1  | -38.4   | 0.373    | -9       | -9  | -999     | 523      | 114.4    | 0.555   | 2         | 1        | 3.1 | 182 | 10  | 290.9 | 2   | 0 | -9 | 78 | 954 | 0  |
| 2 | 9 | 19 | 2  | -38.5   | 0.372    | -9       | -9  | -999     | 523      | 114.1    | 0.555   | 2         | 1        | 3.1 | 171 | 10  | 290.4 | 2   | 0 | -9 | 83 | 953 | 0  |
| 2 | 9 | 19 | 3  | -38.5   | 0.372    | -9       | -9  | -999     | 523      | 114.1    | 0.555   | 2         | 1        | 3.1 | 180 | 10  | 290.4 | 2   | 0 | -9 | 83 | 953 | 0  |
| 2 | 9 | 19 | 4  | -54.5   | 0.527    | -9       | -9  | -999     | 881      | 228.8    | 0.555   | 2         | 1        | 4.1 | 194 | 10  | 290.4 | 2   | 0 | -9 | 83 | 954 | 0  |
| 2 | 9 | 19 | 5  | -46.9   | 0.451    | -9       | -9  | -999     | 702      | 166.9    | 0.555   | 2         | 1        | 3.6 | 185 | 10  | 289.2 | 2   | 0 | -9 | 88 | 954 | 0  |
| 2 | 9 | 19 | 6  | -54.7   | 0.527    | -9       | -9  | -999     | 880      | 227.8    | 0.555   | 2         | 1        | 4.1 | 182 | 10  | 289.2 | 2   | 0 | -9 | 88 | 954 | 0  |
| 2 | 9 | 19 | 7  | -37.7   | 0.689    | -9       | -8  | -999     | 1315     | 739      | 0.555   | 2         | 0.51     | 5.1 | 187 | 10  | 290.4 | 2   | 0 | -9 | 88 | 954 | 5  |
| 2 | 9 | 19 | 8  | 29.4    | 0.647    | 0.326    | C   | 40       | 1199     | -783.7   | 0.555   | 2         | 0.27     | 4.6 | 192 | 10  | 292   | 2   | 0 | -9 | 83 | 955 | 9  |
| 2 | 9 | 19 | 9  | 69.9    | 0.658    | 0.654    | C   | 136      | 1228     | -347     | 0.555   | 2         | 0.19     | 4.6 | 188 | 10  | 293.1 | 2   | 0 | -9 | 83 | 955 | 9  |
| 2 | 9 | 19 | 10 | 50.8    | 0.72     | 0.676    | 0   | 206      | 1401     | -623.6   | 0.555   | 2         | 0.16     | 5.1 | 194 | 10  | 294.2 | 2   | 0 | -9 | 83 | 954 | 10 |
| 2 | 9 | 19 | 11 | 63      | 0.803    | 0.816    | C   | 293      | 1650     | -698.2   | 0.555   | 2         | 0.15     | 5.7 | 188 | 10  | 294.2 | 2   | 0 | -9 | 83 | 955 | 10 |
| 2 | 9 | 19 | 12 | 69.7    | 0.804    | 0.927    | C   | 389      | 1658     | -633.7   | 0.555   | 2         | 0.15     | 5.7 | 193 | 10  | 294.2 | 2   | 0 | -9 | 83 | 954 | 10 |
| 2 | 9 | 19 | 13 | 143.3   | 1.231    | 1.424    | 0   | 686      | 3136     | -1107.6  | 0.555   | 2         | 0.15     | 8.8 | 167 | 10  | 297   | 2   | 0 | -9 | 74 | 953 | 9  |
| 2 | 9 | 19 | 14 | 134.3   | 1.082    | 1.581    | C   | 1002     | 2634     | -801.1   | 0.555   | 2         | 0.15     | 7.7 | 177 | 10  | 297   | 2   | 0 | -9 | 74 | 953 | 9  |
| 2 | 9 | 19 | 15 | 114.7   | 0.879    | 1.603    | 0   | 1222     | 1961     | -502.1   | 0.555   | 2         | 0.16     | 6.2 | 185 | 10  | 297   | 2   | 0 | -9 | 74 | 952 | 9  |
| 2 | 9 | 19 | 16 | 164.9   | 0.821    | 1.877    | C   | 1365     | 1723     | -284.9   | 0.555   | 2         | 0.17     | 5.7 | 174 | 10  | 297   | 2   | 0 | -9 | 74 | 952 | 5  |
| 2 | 9 | 19 | 17 | 91      | 0.729    | 1.563    | C   | 1426     | 1444     | -361     | 0.555   | 2         | 0.23     | 5.1 | 179 | 10  | 297   | 2   | 0 | -9 | 74 | 952 | 5  |
| 2 | 9 | 19 | 18 | 5.6     | 0.928    | 0.619    | C   | 1428     | 2050     | -8888    | 0.555   | 2         | 0.39     | 6.7 | 186 | 10  | 295.9 | 2   | 0 | -9 | 74 | 952 | 9  |
| 2 | 9 | 19 | 19 | -40.7   | 0.459    | -9       | -9  | -999     | 981      | 201.1    | 0.555   | 2         | 1        | 3.6 | 195 | 10  | 295.4 | 2   | 0 | -9 | 78 | 952 | 5  |
| 2 | 9 | 19 | 20 | -54     | 0.607    | -9       |     |          | 1085     | 350.4    | 0.555   | 2         | 1        | 4.6 | 167 | 10  | 294.2 | 2   | 0 | -9 | 83 | 952 | 5  |
| 2 | 9 | 19 | 21 | -64     | 0.983    | -9       | -9  | -999     | 2239     | 1259.1   | 0.555   | 2         | 1        | 7.2 | 180 | 10  | 293.1 | 2   | 0 | -9 | 88 | 952 | 0  |
| 2 | 9 | 19 | 22 | -64     | 0.839    | -9       | -6  | -999     | 1800     | 784.8    | 0.555   | 2         | 1        | 6.2 | 185 | 10  | 292.5 | 2   | 0 | -9 | 91 | 953 | 2  |
| 2 | 9 | 19 | 23 | -59.2   | 0.603    | -9       | -9  | -999     | 1143     | 315.4    | 0.555   | 2         | 1        | 4.6 | 181 | 10  | 292   | 2   | 0 | .9 | 94 | 953 | 3  |
| 2 | 9 | 19 | 24 | -59.2   | 0.603    | -9       | -9  | -999     | 1079     | 315.4    | 0.555   | 2         | 1        | 4.6 | 183 | 10  | 292   | 2   | 0 | -9 | 94 | 953 | 3  |

| Ja                                                   | me                                               | sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wn                                                      | 2002                                                                                                                         |                                                                                                                                                                                              |                                                                            |                                                                                     |                                                                               |                                                                                                                                                                            | impacti                                                                                                                         | ng win                                                                                     | d direct                                                                                     | on = 18                                                                                                                                | 0                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                   |                                                                                                                                                                                 |                                             |                        |                    |                                                                                              |                                                                      |
|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------|--------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 4                                                    | M                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                       | ht flux                                                                                                                      | fric vel                                                                                                                                                                                     | conv vel                                                                   | ptg                                                                                 | conv mix                                                                      | mech mix                                                                                                                                                                   | M-O                                                                                                                             | rough                                                                                      | Bowen                                                                                        | albedo                                                                                                                                 | spd                                                                                                                                                                                                                                     | dir                                                                                                                                                    | hgt                                                                               | t(K)                                                                                                                                                                            | hgt                                         |                        |                    |                                                                                              |                                                                      |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                       | -42.7                                                                                                                        | 0.382                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 555                                                                                                                                                                        | 111.8                                                                                                                           | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 3.6                                                                                                                                                                                                                                     | 179                                                                                                                                                    | 10                                                                                | 270.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 54                                                                                           | 96                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                       | -42.7                                                                                                                        | 0.382                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 543                                                                                                                                                                        | 111.8                                                                                                                           | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 3.6                                                                                                                                                                                                                                     | 189                                                                                                                                                    | 10                                                                                | 270.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 54                                                                                           | 96                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                       | -34.7                                                                                                                        | 0.31                                                                                                                                                                                         | -9                                                                         | -9                                                                                  | -999                                                                          | 399                                                                                                                                                                        |                                                                                                                                 | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 3.1                                                                                                                                                                                                                                     | 188                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 59                                                                                           |                                                                      |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                       | -41.1                                                                                                                        | 0.385                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 549                                                                                                                                                                        |                                                                                                                                 |                                                                                            | 1.5                                                                                          | 1                                                                                                                                      | 3.6                                                                                                                                                                                                                                     | 186                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 54                                                                                           | 96                                                                   |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                       | -34.7                                                                                                                        | 0.31                                                                                                                                                                                         | -9                                                                         | -9                                                                                  | -999                                                                          | 399                                                                                                                                                                        | 73.1                                                                                                                            | 0.361                                                                                      |                                                                                              | 1                                                                                                                                      |                                                                                                                                                                                                                                         | 169                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        | 1000               | 59                                                                                           | 152.2                                                                |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                       | -27                                                                                                                          | 0.404                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 591                                                                                                                                                                        | 209.7                                                                                                                           |                                                                                            | 1.5                                                                                          | 1                                                                                                                                      |                                                                                                                                                                                                                                         | 178                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 59                                                                                           |                                                                      |
| 2                                                    | 2                                                | 90000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                       |                                                                                                                              | 0.319                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 418                                                                                                                                                                        |                                                                                                                                 |                                                                                            |                                                                                              | 1                                                                                                                                      | 3.1                                                                                                                                                                                                                                     | 1250                                                                                                                                                   | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 59                                                                                           | 95                                                                   |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                       | -41.7                                                                                                                        | 20000000000                                                                                                                                                                                  | -9                                                                         | -9                                                                                  | -999                                                                          | 546                                                                                                                                                                        |                                                                                                                                 |                                                                                            |                                                                                              | 0.85                                                                                                                                   |                                                                                                                                                                                                                                         | 167                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 | 11.00                                       | WOO                    | -30                | 59                                                                                           |                                                                      |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                       | -16.9                                                                                                                        | 0.416                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 617                                                                                                                                                                        | 364                                                                                                                             |                                                                                            | 1.5                                                                                          |                                                                                                                                        | 3.6                                                                                                                                                                                                                                     |                                                                                                                                                        | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    |                                                                                              |                                                                      |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #1154                                                   | 33.4                                                                                                                         |                                                                                                                                                                                              | 0.35                                                                       | 0.009                                                                               | 44                                                                            |                                                                                                                                                                            |                                                                                                                                 | 200220                                                                                     |                                                                                              | 0.64                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                        | - Muser                                                                           |                                                                                                                                                                                 |                                             | 0                      |                    | 51                                                                                           |                                                                      |
|                                                      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                      |                                                                                                                              | -0.75                                                                                                                                                                                        |                                                                            |                                                                                     | 2005                                                                          | 834                                                                                                                                                                        |                                                                                                                                 |                                                                                            | 1.5                                                                                          | 0.58                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                        | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 44                                                                                           |                                                                      |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | 27.5                                                                                                                         | 0.565                                                                                                                                                                                        | 0.402                                                                      | 0.008                                                                               | 80                                                                            | 975                                                                                                                                                                        |                                                                                                                                 |                                                                                            | 1.5                                                                                          | 0.55                                                                                                                                   |                                                                                                                                                                                                                                         | 200                                                                                                                                                    | 10                                                                                | 277                                                                                                                                                                             |                                             |                        |                    | 39                                                                                           |                                                                      |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                      | 36.4                                                                                                                         | 2000000                                                                                                                                                                                      | 0.517                                                                      | 0.009                                                                               | 130                                                                           | 712                                                                                                                                                                        |                                                                                                                                 |                                                                                            | 1.5                                                                                          | 0.54                                                                                                                                   | 3.6                                                                                                                                                                                                                                     |                                                                                                                                                        | 10                                                                                |                                                                                                                                                                                 |                                             |                        | -550               | 36                                                                                           |                                                                      |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                      | 39.5                                                                                                                         | 0.511                                                                                                                                                                                        | 0.593                                                                      | 0.009                                                                               | 180                                                                           | 840                                                                                                                                                                        | -288.5                                                                                                                          | 0.361                                                                                      | 1.5                                                                                          | 0.54                                                                                                                                   | 4.1                                                                                                                                                                                                                                     | 192                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 34                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                      | 36.8                                                                                                                         | 0.51                                                                                                                                                                                         | 0.62                                                                       | 0.009                                                                               | 221                                                                           | 839                                                                                                                                                                        | -307.7                                                                                                                          | 0.361                                                                                      | 1.5                                                                                          | 0.54                                                                                                                                   | 4.1                                                                                                                                                                                                                                     | 202                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 34                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                      | 28.6                                                                                                                         | 0.507                                                                                                                                                                                        | 0.596                                                                      | 0.009                                                                               | 253                                                                           | 831                                                                                                                                                                        | -388.8                                                                                                                          | 0.361                                                                                      | 1.5                                                                                          | 0.55                                                                                                                                   | 4.1                                                                                                                                                                                                                                     | 197                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 37                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                      | 15.1                                                                                                                         | 0.329                                                                                                                                                                                        | 0.493                                                                      | 0.013                                                                               | 270                                                                           | 456                                                                                                                                                                        | -199.8                                                                                                                          | 0.361                                                                                      | 1.5                                                                                          | 0.57                                                                                                                                   | 2.6                                                                                                                                                                                                                                     | 197                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 37                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                      | 0.1                                                                                                                          | 0.313                                                                                                                                                                                        | 0.093                                                                      | 0.013                                                                               | 270                                                                           | 404                                                                                                                                                                        | -8888                                                                                                                           | 0.361                                                                                      | 1.5                                                                                          | 0.64                                                                                                                                   | 2.6                                                                                                                                                                                                                                     | 194                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 39                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                      | -4.7                                                                                                                         | 0.09                                                                                                                                                                                         | -9                                                                         | -9                                                                                  | -999                                                                          | 131                                                                                                                                                                        | 13.3                                                                                                                            | 0.361                                                                                      | 1.5                                                                                          | 0.84                                                                                                                                   | 1.5                                                                                                                                                                                                                                     | 197                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 37                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                                      | -999                                                                                                                         | -9                                                                                                                                                                                           | -9                                                                         | -9                                                                                  | -999                                                                          | -999                                                                                                                                                                       | -99999                                                                                                                          | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                      | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 39                                                                                           | 95                                                                   |
| 2                                                    | 2                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                      | -21.8                                                                                                                        | 0.34                                                                                                                                                                                         | -9                                                                         | -9                                                                                  | -999                                                                          | 456                                                                                                                                                                        | 153.7                                                                                                                           | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 3.1                                                                                                                                                                                                                                     | 170                                                                                                                                                    |                                                                                   | 279.2                                                                                                                                                                           |                                             |                        |                    | 42                                                                                           | 55.57                                                                |
| 2                                                    | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | -25.9                                                                                                                        |                                                                                                                                                                                              | -9                                                                         | -9                                                                                  | -999                                                                          | 594                                                                                                                                                                        |                                                                                                                                 | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      |                                                                                                                                                                                                                                         | 168                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 39                                                                                           |                                                                      |
| 2                                                    |                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | -26                                                                                                                          | 0.405                                                                                                                                                                                        | -9                                                                         | -9                                                                                  | -999                                                                          | 594                                                                                                                                                                        |                                                                                                                                 | 0.361                                                                                      | 1.5                                                                                          | - 1                                                                                                                                    | 3.6                                                                                                                                                                                                                                     | 169                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 57                                                                                           |                                                                      |
| 2                                                    |                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         | -28.9                                                                                                                        | 201 2012                                                                                                                                                                                     | -9                                                                         | -9                                                                                  | -999                                                                          | 902                                                                                                                                                                        |                                                                                                                                 | 0.361                                                                                      | 1.5                                                                                          | 1                                                                                                                                      | 4.6                                                                                                                                                                                                                                     | 167                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             |                        |                    | 57                                                                                           |                                                                      |
|                                                      |                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                                                                                              |                                                                                                                                                                                              |                                                                            |                                                                                     | 26277.73                                                                      |                                                                                                                                                                            | 402.0                                                                                                                           | 0.301                                                                                      | 1.0                                                                                          |                                                                                                                                        |                                                                                                                                                                                                                                         | 101                                                                                                                                                    | 10                                                                                |                                                                                                                                                                                 |                                             | 1570                   | 57.3               |                                                                                              | V-505                                                                |
| ne                                                   | t fe                                             | or n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıax                                                     |                                                                                                                              |                                                                                                                                                                                              | -9<br>or case 1                                                            | -9<br>c(hs=10                                                                       | -999<br>oft, ERI) -                                                           | 400<br>max impac                                                                                                                                                           | 123.7<br>t was at                                                                                                               | 0E, 20                                                                                     |                                                                                              | 1<br>d directi                                                                                                                         | VI DOLLAR                                                                                                                                                                                                                               | 178                                                                                                                                                    | 10                                                                                | 280.4                                                                                                                                                                           | 2                                           | 0                      | -9                 | 39                                                                                           | 95                                                                   |
| Eri                                                  | t fo                                             | or n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nax                                                     | 24-hr ir                                                                                                                     | npact fo                                                                                                                                                                                     | or case 1                                                                  | c(hs=10                                                                             | Oft, ERI) -                                                                   | max impac                                                                                                                                                                  | t was at                                                                                                                        | 0E, 20                                                                                     | N<br>ting win                                                                                | d directi                                                                                                                              | ion =                                                                                                                                                                                                                                   | 180                                                                                                                                                    |                                                                                   |                                                                                                                                                                                 |                                             | 0                      | -9                 | 39                                                                                           | 95                                                                   |
| ne<br>Eri<br>Y                                       | t fo                                             | or n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nax<br>)<br>H                                           | 24-hr ir<br>ht flux                                                                                                          | npact fo                                                                                                                                                                                     | or case 1                                                                  | c(hs=10<br>ptg                                                                      | oft, ERI) -                                                                   | max impac<br>mech mix                                                                                                                                                      | t was at                                                                                                                        | 0E, 20<br>impact<br>rough                                                                  | N<br>ting win<br>Bowen                                                                       | d directi<br>albedo                                                                                                                    | ion =<br>spd                                                                                                                                                                                                                            | 180<br>dir                                                                                                                                             | hgt                                                                               | t(K)                                                                                                                                                                            | hgt                                         |                        | 27.0               | //EX                                                                                         |                                                                      |
| ne<br>Eri<br>Y                                       | t for                                            | or n<br>2000<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nax<br>H<br>1                                           | 24-hr in<br>ht flux<br>-24.1                                                                                                 | npact for<br>fric vel<br>0.212                                                                                                                                                               | or case 1<br>conv vel<br>-9                                                | c(hs=10<br>ptg<br>-9                                                                | oft, ERI) - conv mix<br>-999                                                  | max impac<br>mech mix<br>224                                                                                                                                               | t was at<br>M-O<br>34.8                                                                                                         | 0E, 201<br>impact<br>rough<br>0.31                                                         | N<br>ting win<br>Bowen<br>1.5                                                                | d directi<br>albedo<br>1                                                                                                               | ion =<br>spd<br>2.6                                                                                                                                                                                                                     | 180<br>dir<br>181                                                                                                                                      | hgt<br>10                                                                         | t(K)<br>272.5                                                                                                                                                                   | hgt<br>2                                    | 0                      | -9                 | 92                                                                                           | 99                                                                   |
| ne<br>Eri<br>Y<br>0                                  | t fo<br>e 2<br>M<br>1                            | or n<br>2000<br>D<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1ax<br>H<br>1<br>2                                      | 24-hr in<br>ht flux<br>-24.1<br>-41.8                                                                                        | fric vel<br>0.212<br>0.363                                                                                                                                                                   | conv vel                                                                   | c(hs=10<br>ptg<br>-9<br>-9                                                          | Oft, ERI) - 1<br>conv mix<br>-999<br>-999                                     | max impac<br>mech mix<br>224<br>503                                                                                                                                        | t was at<br>M-O<br>34.8<br>101.3                                                                                                | 0E, 201<br>impact<br>rough<br>0.31<br>0.31                                                 | N<br>ting win<br>Bowen<br>1.5<br>1.5                                                         | d directi<br>albedo<br>1<br>1                                                                                                          | on =<br>spd<br>2.6<br>3.6                                                                                                                                                                                                               | 180<br>dir<br>181<br>188                                                                                                                               | hgt<br>10<br>10                                                                   | t(K)<br>272.5<br>271.4                                                                                                                                                          | hgt<br>2<br>2                               | 0 0                    | -9                 | 92<br>89                                                                                     | 99                                                                   |
| ne<br>Eri<br>Y<br>0<br>0                             | t fo<br>e 2<br>M<br>1<br>1                       | or n<br>2000<br>D<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 2 3                                                 | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8                                                                               | fric vel<br>0.212<br>0.363<br>0.293                                                                                                                                                          | conv vel<br>-9<br>-9                                                       | c(hs=10<br>ptg -9<br>-9<br>-9                                                       | onv mix<br>-999<br>-999                                                       | max impac<br>mech mix<br>224<br>503<br>367                                                                                                                                 | M-O<br>34.8<br>101.3<br>66.1                                                                                                    | 0E, 200<br>impact<br>rough<br>0.31<br>0.31                                                 | N<br>ting win<br>Bowen<br>1.5<br>1.5                                                         | d directi<br>albedo<br>1<br>1                                                                                                          | spd<br>2.6<br>3.6<br>3.1                                                                                                                                                                                                                | 180<br>dir<br>181<br>188<br>184                                                                                                                        | hgt<br>10<br>10                                                                   | t(K)<br>272.5<br>271.4<br>271.4                                                                                                                                                 | hgt<br>2<br>2<br>2                          | 000                    | -9 -9              | 92<br>89<br>89                                                                               | 99<br>99<br>99                                                       |
| me<br>Eri<br>Y<br>0<br>0<br>0                        | t fe<br>e 2<br>M<br>1<br>1<br>1                  | or n<br>2000<br>D<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 2 3 4                                               | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6                                                                      | fric vel<br>0.212<br>0.363<br>0.293<br>0.492                                                                                                                                                 | conv vel<br>-9<br>-9<br>-9                                                 | c(hs=10<br>ptg<br>-9<br>-9<br>-9<br>-9                                              | oft, ERI) -<br>conv mix<br>-999<br>-999<br>-999                               | max impac<br>mech mix<br>224<br>503<br>367<br>793                                                                                                                          | M-O<br>34.8<br>101.3<br>66.1<br>185.8                                                                                           | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31                                         | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5                                                  | d directi<br>albedo<br>1<br>1                                                                                                          | spd<br>2.6<br>3.6<br>3.1<br>4.6                                                                                                                                                                                                         | 180<br>dir<br>181<br>188<br>184<br>193                                                                                                                 | hgt<br>10<br>10<br>10                                                             | t(K)<br>272.5<br>271.4<br>271.4<br>271.4                                                                                                                                        | hgt<br>2<br>2<br>2<br>2                     | 0000                   | 9 9 9 9            | 92<br>89<br>89<br>89                                                                         | 99<br>99<br>99                                                       |
| me<br>Eri<br>Y 0<br>0<br>0<br>0<br>0                 | t fo<br>e 2<br>M<br>1<br>1                       | or n<br>2000<br>D<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 2 3 4 5                                             | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5                                                             | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554                                                                                                                                        | conv vel<br>-9<br>-9<br>-9<br>-9                                           | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9                                           | onv mix<br>-999<br>-999<br>-999<br>-999<br>-999                               | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946                                                                                                                   | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1                                                                                  | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31                                 | N<br>ting win<br>Bowen<br>1.5<br>1.5                                                         | d directi<br>albedo<br>1<br>1                                                                                                          | spd<br>2.6<br>3.6<br>3.1<br>4.6                                                                                                                                                                                                         | 180<br>dir<br>181<br>188<br>184                                                                                                                        | hgt<br>10<br>10                                                                   | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272                                                                                                                                 | hgt<br>2<br>2<br>2<br>2                     | 0000                   | 9 9 9 9            | 92<br>89<br>89                                                                               | 99<br>99<br>99                                                       |
| me<br>Eri<br>Y<br>0<br>0<br>0                        | t fe<br>e 2<br>M<br>1<br>1<br>1                  | or n<br>2000<br>D<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 2 3 4 5 6                                           | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64                                                      | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617                                                                                                                               | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9                                     | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9                                                | oft, ERI) -<br>conv mix<br>-999<br>-999<br>-999                               | max impac<br>mech mix<br>224<br>503<br>367<br>793                                                                                                                          | M-O<br>34.8<br>101.3<br>66.1<br>185.8                                                                                           | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31                                         | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5                                                  | d directi<br>albedo<br>1<br>1<br>1                                                                                                     | spd<br>2.6<br>3.6<br>3.1<br>4.6                                                                                                                                                                                                         | 180<br>dir<br>181<br>188<br>184<br>193                                                                                                                 | hgt<br>10<br>10<br>10<br>10<br>10                                                 | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272<br>272.5                                                                                                                        | hgt<br>2<br>2<br>2<br>2<br>2                | 00000                  | 99999              | 92<br>89<br>89<br>89                                                                         | 99<br>99<br>99<br>99                                                 |
| me<br>Eri<br>Y 0<br>0<br>0<br>0<br>0                 | t fe<br>e 2<br>M<br>1<br>1<br>1                  | or n<br>2000<br>D<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 2 3 4 5                                             | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5                                                             | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617                                                                                                                               | conv vel<br>-9<br>-9<br>-9<br>-9                                           | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                                          | onv mix<br>-999<br>-999<br>-999<br>-999<br>-999                               | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946                                                                                                                   | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1                                                                         | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31                                 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5                                                  | d directi<br>albedo<br>1<br>1<br>1<br>1                                                                                                | spd<br>2.6<br>3.6<br>3.1<br>4.6<br>5.1                                                                                                                                                                                                  | 180<br>dir<br>181<br>188<br>184<br>193<br>183                                                                                                          | hgt<br>10<br>10<br>10<br>10<br>10                                                 | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272                                                                                                                                 | hgt<br>2<br>2<br>2<br>2<br>2<br>2           | 000000                 | 999999             | 92<br>89<br>89<br>89<br>85                                                                   | 99<br>99<br>99<br>99                                                 |
| ne<br>Eri<br>Y 0<br>0<br>0<br>0<br>0                 | ot for 2 M 1 1 1 1 1 1 1 1                       | or n<br>2000<br>D<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10x<br>H 1 2 3 4 5 6 7 8                                | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64                                                      | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554                                                                                                                      | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                         | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                                    | ont, ERI) -<br>conv mix<br>-999<br>-999<br>-999<br>-999<br>-999               | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114                                                                                                           | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6                                                                | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31                         | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5                                           | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1                                                                                           | spd<br>2.6<br>3.6<br>3.1<br>4.6<br>5.1                                                                                                                                                                                                  | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182                                                                                                   | hgt<br>10<br>10<br>10<br>10<br>10                                                 | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272<br>272.5<br>272.5                                                                                                               | hgt<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0000000                | 9999999            | 92<br>89<br>89<br>89<br>85<br>82                                                             | 99<br>99<br>99<br>99<br>99                                           |
| me<br>Eri<br>Y 0 0 0 0<br>0 0                        | ot for 2 M 1 1 1 1 1 1 1 1                       | 00 n<br>2000<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H 1 2 3 4 5 6 7                                         | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64<br>-63.4                                             | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554                                                                                                                      | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                               | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                                          | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999              | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952                                                                                                    | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6                                                                | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31                         | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                    | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1                                                                                      | spd<br>2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6                                                                                                                                                                                           | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193                                                                                     | hgt<br>10<br>10<br>10<br>10<br>10                                                 | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272<br>272.5<br>272.5<br>273.8                                                                                                      | hgt 2 2 2 2 2 2 2 2                         | 00000000               | 99999999           | 92<br>89<br>89<br>89<br>85<br>82<br>79                                                       | 99<br>99<br>99<br>99<br>99<br>99                                     |
| me<br>Eri<br>Y 0<br>0<br>0<br>0<br>0<br>0<br>0       | t for 2 M 1 1 1 1 1 1 1 1 1 1                    | or n<br>2000<br>D<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10x<br>H 1 2 3 4 5 6 7 8                                | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64<br>-63.4<br>-63.2                                    | fric vel<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619                                                                                                             | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                         | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                                    | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999              | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948                                                                                             | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8                                                       | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31                 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                             | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                 | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6                                                                                                                                                                                | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193                                                                                     | hgt<br>10<br>10<br>10<br>10<br>10<br>10                                           | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272<br>272.5<br>272.5<br>273.8<br>275.4                                                                                             | hgt 2 2 2 2 2 2 2 2                         | 000000000              | 999999999          | 92<br>89<br>89<br>85<br>82<br>79                                                             | 99<br>99<br>99<br>99<br>99<br>99                                     |
| ne<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0                   | t for 2 M 1 1 1 1 1 1 1 1 1 1                    | 00 m m m m m m m m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H 1 2 3 4 5 6 7 8 9                                     | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64<br>-63.4<br>-63.2<br>-61.9                           | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706                                                                                                   | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                         | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                              | oft, ERI)<br>conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999 | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117                                                                                     | M-O 34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8<br>338.3<br>1365                                         | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5               | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.777<br>0.63                                                           | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2                                                                                                                                                                         | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191                                                                       | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                               | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5                                                                                           | hgt 2 2 2 2 2 2 2 2 2 2 2                   | 0000000000             | 999999999          | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58                                           | 99<br>99<br>99<br>99<br>99<br>99                                     |
| me<br>Eri<br>Y 0 0 0 0 0<br>0 0 0 0                  | ot for 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 0 n n n n n n n n n n n n n n n n n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11                               | 24-hr in<br>ht flux<br>-24.1<br>-41.8<br>-33.8<br>-56.6<br>-63.5<br>-64<br>-63.4<br>-63.2<br>-61.9<br>-22.9                  | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775                                                                                          | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                         | ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                                    | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565                                                                     | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8<br>338.3<br>1365<br>-2708                             | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5        | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58                                                         | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2<br>6.7                                                                                                                                                                  | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194                                                                | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                         | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2                                                                                  | hgt 2 2 2 2 2 2 2 2 2 2 2 2                 | 0000000000             | 9999999999         | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>53                                     | 99<br>99<br>99<br>99<br>99<br>99<br>99                               |
| me<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0                 | ot for e 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11 12                            | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64.4 -63.2 -61.9 -22.9 15.2 31                                               | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721                                                                                 | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9             | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                         | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565                                                                     | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8<br>338.3<br>1365<br>-2708<br>-1071                    | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58                                                         | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2                                                                                                                                                           | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196                                                         | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                   | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9                                                                | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 00000000000            | 99999999999        | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>58<br>53<br>44                                     | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                         |
| ne<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0                   | t fe 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11 12 13                         | 24-hr in ht flux -24.1 -41.6 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4                                            | npact for<br>0 212<br>0 363<br>0 293<br>0 492<br>0 554<br>0 617<br>0 554<br>0 619<br>0 706<br>0 775<br>0 721<br>0 779                                                                        | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                   | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414                                                             | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8<br>338.3<br>1365<br>-2708<br>-1071<br>-1177           | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56                                                      | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2                                                                                                                                                           | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223                                                  | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10             | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5                                                       | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 000000000000           | 999999999999       | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>53<br>44<br>38                         | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                         |
| ne<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14                      | 24-hr in ht flux -24.1 -41.6 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9                                       | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721<br>0.779<br>0.653                                                               | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                   | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231                                             | M-O<br>34.8<br>101.3<br>66.1<br>185.8<br>236.1<br>325.1<br>236.6<br>237.8<br>338.3<br>1365<br>-2708<br>-1071<br>-1177<br>-881.7 | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56<br>0.56                                              | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6                                                                                                                                                           | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219                                           | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>282.5                                                       | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0000000000000          | 9999999999999      | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39                   | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                   |
| ne<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | t for 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18x<br>H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15            | 24-hr in ht flux -24.1 -41.6 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4                                   | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721<br>0.779<br>0.653<br>0.591                                                      | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9                   | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231                                             | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933                                     | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56<br>0.57                                              | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6                                                                                                                                                           | 180<br>dir<br>181<br>188<br>184<br>193<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219<br>212                                           | hgt 10 10 10 10 10 10 10 10 10 10 10 10                                           | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>282.5<br>283.1                                              | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 00000000000000         | 99999999999999     | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39                   | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99                   |
| me<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | t for 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18x<br>H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16         | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7                             | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721<br>0.779<br>0.653<br>0.591<br>0.513                                             | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9             | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850                              | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6                               | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56<br>0.57<br>0.59                                 | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6                                                                                                                                             | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219<br>212<br>194                             | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>283.1<br>283.1                                              | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 000000000000000        |                    | 92<br>89<br>89<br>85<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>39                         | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99             |
| me<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | t fe 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | or m<br>20000<br>D<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17             | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.4 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7 -39.5                 | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721<br>0.779<br>0.653<br>0.591<br>0.513                                             | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | oc(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9            | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>526                       | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6 110.5                         | 0E, 200<br>impact<br>rough<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31<br>0.31 | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56<br>0.57<br>0.59<br>0.66                              | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6<br>5.1<br>4.6<br>6.2<br>6.7<br>6.2<br>6.7<br>6.2<br>6.7<br>6.2<br>6.7<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3 | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219<br>212<br>194<br>181                      | hgt<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | t(K)<br>272.5<br>271.4<br>271.4<br>271.5<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>282.5<br>283.1<br>283.1<br>280.9                            | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0000000000000000       |                    | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>39<br>47       | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99             |
| me<br>Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0         | t fe 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | or m<br>20000<br>D<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18          | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7 -39.5 -47.8                 | npact for<br>0 212<br>0 363<br>0 293<br>0 492<br>0 554<br>0 617<br>0 554<br>0 619<br>0 706<br>0 775<br>0 771<br>0 779<br>0 653<br>0 591<br>0 513<br>0 367                                    | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9       | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9             | conv mix<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-999<br>-9        | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>526<br>648                | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6 110.5 146.8                   | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N<br>ting win<br>Bowen<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5 | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.58<br>0.56<br>0.57<br>0.59<br>0.66                              | spd 2.6 3.6 3.1 4.6 5.1 5.6 5.1 5.6 6.2 6.7 5.6 3.6 4.1                                                                                                                                                                                 | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>223<br>221<br>212<br>194<br>181<br>167                      | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.5<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>283.1<br>283.1<br>280.9<br>280.4                            | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 000000000000000000     |                    | 92<br>89<br>89<br>85<br>82<br>79<br>75<br>70<br>58<br>39<br>44<br>38<br>39<br>47<br>49       | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99             |
| THEY 000000000000000000000000000000000000            | t fe 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | or no 2000 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19       | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7 -39.5 -47.8 -47.9           | npact for<br>0 212<br>0 363<br>0 293<br>0 492<br>0 554<br>0 617<br>0 554<br>0 619<br>0 706<br>0 775<br>0 721<br>0 779<br>0 653<br>0 591<br>0 513<br>0 367<br>0 43                            | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9 | ptg -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9                                          | oft, ERI) - conv mix -999 -999 -999 -999 -999 -999 -999 -9                    | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>526<br>648<br>648         | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -1933 430.6 110.5 146.8 146.8                    | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N ting win Bowen 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                     | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.777<br>0.633<br>0.586<br>0.566<br>0.577<br>0.599<br>0.666<br>0.844              | spd 2.6 3.6 3.1 4.6 5.1 5.6 6.2 6.7 5.6 5.1 4.6 3.6 4.1 4.1                                                                                                                                                                             | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>223<br>221<br>212<br>194<br>181<br>167<br>184               | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>279.2<br>280.9<br>282.5<br>283.1<br>283.1<br>280.9<br>280.4<br>280.4                   | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0000000000000000000    |                    | 92<br>89<br>89<br>89<br>85<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>47<br>49<br>52 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99       |
| ne Eri<br>Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    | ot for 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | or no 2000 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20    | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7 -39.5 -47.8 -47.9 -54.9     | npact for vel 0 212 0 363 0 293 0 492 0 554 0 617 0 554 0 619 0 706 0 775 0 721 0 779 0 653 0 591 0 513 0 367 0 43 0 493                                                                     | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9 | ptg -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9                                          | oft, ERI) - conv mix -999 -999 -999 -999 -999 -999 -999 -9                    | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>526<br>648<br>648<br>795  | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -1933 430.6 110.5 146.8 192.9                    | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N ting win Bowen 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                     | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.777<br>0.633<br>0.586<br>0.566<br>0.577<br>0.599<br>0.666<br>0.844              | son = spd 2.6 3.6 3.1 4.6 5.1 5.6 6.2 6.7 6.2 6.7 6.2 6.7 4.6 3.6 4.1 4.6                                                                                                                                                               | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219<br>212<br>194<br>181<br>167<br>184        | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>280.9<br>282.5<br>282.5<br>283.1<br>283.1<br>280.9<br>280.4<br>280.4                   | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 00000000000000000000   | 999999999999999999 | 92<br>89<br>89<br>85<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>47<br>49<br>52<br>52 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99       |
| ne Eri                                               | ot for M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | or methods   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31.35.4 27.9 9.4 -27.7 -39.5 -47.8 -47.9 -54.9 -64 | npact for vel 0 212 0 363 0 293 0 492 0 554 0 617 0 554 0 619 0 706 0 775 0 721 0 779 0 653 0 591 0 513 0 367 0 43 0 493 0 618                                                               | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9 | ptg -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9                                          | oft, ERI) - conv mix -999 -999 -999 -999 -999 -999 -999 -9                    | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>648<br>648<br>795<br>1115 | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6 110.5 146.8 192.9 325.5       | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N ting win Bowen 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                     | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.777<br>0.633<br>0.586<br>0.566<br>0.577<br>0.599<br>0.666<br>0.844              | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6<br>4.1<br>4.6<br>4.1<br>4.6<br>5.6                                                                                                                        | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>212<br>194<br>181<br>167<br>184<br>177<br>170 | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>280.9<br>282.5<br>282.5<br>283.1<br>280.9<br>282.4<br>280.4<br>280.4<br>280.4          | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 00000000000000000000   | 999999999999999999 | 92<br>89<br>89<br>89<br>85<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>47<br>49<br>52 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99       |
| ne Eri                                               | ot for 2 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | or methods   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20    | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31 35.4 27.9 9.4 -27.7 -39.5 -47.8 -47.9 -54.9     | npact for<br>0.212<br>0.363<br>0.293<br>0.492<br>0.554<br>0.617<br>0.554<br>0.619<br>0.706<br>0.775<br>0.721<br>0.779<br>0.653<br>0.591<br>0.513<br>0.367<br>0.43<br>0.493<br>0.618<br>0.555 | conv vel -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9                            | c(hs=10<br>ptg -9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9 | oft, ERI) - conv mix -999 -999 -999 -999 -999 -999 -999 -9                    | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>526<br>648<br>648<br>795  | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6 110.5 146.8 192.9 325.5       | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N ting win Bowen 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                     | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>0.77<br>0.63<br>0.56<br>0.56<br>0.57<br>0.59<br>0.66<br>0.84                      | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>6.2<br>6.7<br>6.2<br>6.7<br>5.6<br>4.1<br>4.6<br>4.1<br>4.6<br>5.6                                                                                                                        | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>219<br>212<br>194<br>181<br>167<br>184        | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>280.9<br>282.5<br>282.5<br>283.1<br>280.9<br>282.4<br>280.4<br>280.4<br>280.4          | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 000000000000000000000  |                    | 92<br>89<br>89<br>85<br>79<br>75<br>70<br>58<br>53<br>44<br>38<br>39<br>47<br>49<br>52<br>52 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 |
| ne Eri                                               | ot for M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | or methods of the control of the con | H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 24-hr in ht flux -24.1 -41.8 -33.8 -56.6 -63.5 -64 -63.2 -61.9 -22.9 15.2 31.35.4 27.9 9.4 -27.7 -39.5 -47.8 -47.9 -54.9 -64 | npact for vel 0.212 0.363 0.293 0.492 0.554 0.617 0.756 0.775 0.721 0.779 0.653 0.591 0.513 0.43 0.43 0.493 0.618 0.555                                                                      | conv vel<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9<br>-9 | ptg -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9                                          | conv mix -999 -999 -999 -999 -999 -999 -999 -9                                | max impac<br>mech mix<br>224<br>503<br>367<br>793<br>946<br>1114<br>952<br>948<br>1117<br>1363<br>1565<br>1414<br>1577<br>1231<br>1050<br>850<br>648<br>648<br>795<br>1115 | M-O 34.8 101.3 66.1 185.8 236.1 325.1 236.6 237.8 338.3 1365 -2708 -1071 -1177 -881.7 -1933 430.6 110.5 146.8 192.9 325.5 244.2 | 0E, 200 impact rough 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31                               | N ting win Bowen 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                     | d directi<br>albedo<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0.777<br>0.63<br>0.58<br>0.56<br>0.55<br>0.55<br>0.56<br>0.84<br>1<br>1<br>1 | spd 2.6<br>3.6<br>3.1<br>4.6<br>5.1<br>5.6<br>6.2<br>6.7<br>5.6<br>5.1<br>4.6<br>4.1<br>4.6<br>5.6                                                                                                                                      | 180<br>dir<br>181<br>188<br>184<br>193<br>183<br>182<br>215<br>193<br>177<br>191<br>194<br>196<br>223<br>212<br>194<br>181<br>167<br>184<br>177<br>170 | hgt 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | t(K)<br>272.5<br>271.4<br>271.4<br>271.4<br>272.5<br>272.5<br>273.8<br>275.4<br>277.5<br>280.9<br>282.5<br>282.5<br>283.1<br>283.1<br>280.9<br>280.4<br>280.4<br>280.4<br>280.4 | hgt 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 0000000000000000000000 |                    | 92<br>89<br>89<br>89<br>85<br>75<br>70<br>58<br>53<br>44<br>39<br>39<br>47<br>49<br>52<br>52 | 99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 |

| lan | nes | ston | wn : | 2002    |          |            |       |          |          |         | impac | ting win | d direct | ion = | 300 |     |       |     |    |    |    |     |    |
|-----|-----|------|------|---------|----------|------------|-------|----------|----------|---------|-------|----------|----------|-------|-----|-----|-------|-----|----|----|----|-----|----|
| YI  | M   | D    | H    | ht flux | fric vel | conv vel p | otg   | conv mix | mech mix | M-O     | rough | Bowen    | albedo   | spd   | dir | hgt | t(K)  | hgt |    |    |    |     |    |
| 2   | 4   | 5    | 1    | -15     | 0.267    | -9         | -9    | -999     | 318      | 109.5   | 0.683 | 0.55     | 1        | 2.1   | 285 | 10  | 270.4 | 2   | 0  | -9 | 80 | 963 | 10 |
| 2   | 4   | 5    | 2    | -34.7   | 0.308    | -9         | -9    | -999     | 393      | 72.4    | 0.683 | 0.55     | 1        | 2.6   | 291 | 10  | 269.2 | 2   | 0  | -9 | 74 | 962 | 0  |
| 2   | 4   | 5    | 3    | -23.1   | 0.345    | -9<br>-9   | -9    | -999     | 467      | 152.9   | 0.683 | 0.55     | 1        | 2.6   | 302 | 10  | 269.2 | 2   | 0  | -9 | 74 | 962 | 9  |
| 2   | 4   | 5    | 4    | -19.9   | 0.353    | -9         | -9    | -999     | 482      | 188.9   | 0.683 | 0.55     | 1        | 2.6   | 304 | 10  | 268.1 | 2   | 0  | -9 | 80 | 962 | 10 |
| 2   | 4   | 5    | 5    | -15     | 0.267    | -9<br>-9   | -9    | -999     | 321      | 108.9   | 0.683 | 0.55     | 1        | 2.1   | 311 | 10  | 269.2 | 2   | 0  | -9 | 69 | 962 | 10 |
| 2   | 4   | 5    | 6    | -999    | -9       | -9         | -9    | -999     | -999     | -99999  | 0.683 | 0.55     | 1        | 0     | 0   | 10  | 269.2 | 2   | 0  | -9 | 69 | 962 | 10 |
| 2   | 4   | 5    | 7    | -16.8   | 0.258    | -9         | -9    | -999     | 302      | 88.1    | 0.683 | 0.55     | 0.47     | 2.1   | 305 | 10  | 269.2 | 2   | 0  | -9 | 74 | 962 | 3  |
| 2   | 4   | 5    | 8    | 14.4    | 0.4      | 0.511      | 0.005 | 317      | 582      | -382.4  | 0.683 | 0.55     | 0.25     | 2.6   | 300 | 10  | 270.4 | 2   | 0  | -9 | 69 | 962 | 9  |
| 2   | 4   | 5    | 9    | 36.3    | 0.483    | 0.894      | 0.005 | 674      | 772      | -266.4  | 0.683 | 0.55     | 0.17     | 3.1   | 288 | 10  | 270.4 | 2   | 0  | -9 | 64 | 962 | 9  |
| 2   | 4   | 5    | 10   | 54.6    | 0.56     | 1.098      | 0.005 | 831      | 964      | -276.5  | 0.683 | 0.55     | 0.15     | 3.6   | 334 | 10  | 270.9 | 2   | 0  | -9 | 64 | 962 | 9  |
| 2   | 4   | 5    | 11   | 67.9    | 0.635    | 1.267      | 0.005 | 1029     | 1161     | -322.8  | 0.683 | 0.55     | 0.14     | 4.1   | 295 | 10  | 272   | 2   | 0  | -9 | 59 | 961 | 9  |
| 2   | 4   | 5    | 12   | 75.7    | 0.865    | 1.403      | 0.009 | 1251     | 1846     | -731.6  | 0.683 | 0.55     | 0.14     | 5.7   | 292 | 10  | 273.1 | 2   | 0  | -9 | 51 | 960 | 9  |
| 2   | 4   | 5    | 13   | 36.8    | 0.415    | 1.124      | 0.005 | 1319     | 858      | -165.6  | 0.683 | 0.55     | 0.14     | 2.6   | 283 | 10  | 272   | 2   | 0  | -9 | 55 | 960 | 10 |
| 2   | 4   | 5    | 14   | 34.8    | 0.413    | 1.12       | 0.007 | 1380     | 619      | -173.8  | 0.683 | 0.55     | 0.14     | 2.6   | 335 | 10  | 272   | 2   | 0  | -9 | 64 | 959 | 10 |
| 2   | 4   | 5    | 15   | 29.7    | 0.48     | 1.076      | 0.009 | 1433     | 764      | -317.9  | 0.683 | 0.55     | 0.14     | 3.1   | 266 | 10  | 272   | 2   | 0  | -9 | 75 | 959 | 10 |
| 2   | 4   | 5    | 16   | 21.8    | 0.476    | 0.979      | 0.01  | 1469     | 755      | -421.9  | 0.683 | 0.55     | 0.15     | 3.1   | 300 | 10  | 270.9 | 2   | 22 | -9 | 86 | 958 | 10 |
| 2   | 4   | 5    | 17   | 11.5    | 0.616    | 0.794      | 0.01  | 1490     | 1110     | -1737.7 | 0.683 | 0.55     | 0.19     | 4.1   | 332 | 10  | 270.9 | 2   | 0  | -9 | 80 | 958 | 10 |
| 2   | 4   | 5    | 18   | -8.4    | -9       | -9         | -9    | -999     | -999     | -99999  | 0.683 | 0.55     | 0.29     | 0     | 0   | 10  | 270.9 | 2   | 22 | -9 | 86 | 958 | 10 |
| 2   | 4   | 5    | 19   | -28.4   | 0.513    | -9         | -9    | -999     | 845      | 406.4   | 0.683 | 0.55     | 0.62     | 3.6   | 312 | 10  | 270.4 | 2   | 22 | -9 | 86 | 958 | 10 |
| 2   | 4   | 5    | 20   | -37.2   | 0.667    | -9         | -9    | -999     | 1252     | 681.8   | 0.683 | 0.55     | 1        | 4.6   | 314 | 10  | 270.4 | 2   | 22 | -9 | 93 | 959 | 10 |
| 2   | 4   | 5    | 21   | -39     | 0.586    | -9         | -9    | -999     | 1040     | 442.3   | 0.683 | 0.55     | 1        | 4.1   | 304 | 10  | 270.4 | 2   | 0  | -9 | 80 | 959 | 9  |
| 2   | 4   | 5    | 22   | -24.3   | 0.434    | -9<br>-9   | -9    | -999     | 676      | 287     | 0.683 | 0.55     | 1        | 3.1   | 299 | 10  | 269.2 | 2   | 22 | -9 | 86 | 959 | 10 |
| 2   | 4   | 5    | 23   | -49.4   | 0.74     | -9         | -9    | -999     | 1465     | 702.5   | 0.683 | 0.55     | 1        | 5.1   | 301 | 10  | 269.2 | 2   | 0  | -9 | 86 | 959 | 9  |
| 2   | 4   | 5    | 24   | -28.5   | 0.428    | -9         | -9    | -999     | 744      | 234.8   | 0.683 | 0.55     | 1        | 3.1   | 314 | 10  | 269.2 | 2   | 0  | -9 | 86 | 958 | 9  |

| Ja | ime | st | owi | 2002    |          |            |       |          |          | impactin |       |       |        |     |     |     |       |     |    |    |    |     |    |
|----|-----|----|-----|---------|----------|------------|-------|----------|----------|----------|-------|-------|--------|-----|-----|-----|-------|-----|----|----|----|-----|----|
| Y  | M   | D  | H   | ht flux | fric vel | conv vel p | otg   | conv mix | mech mix | M-O      | rough | Bowen | albedo | spd | dir | hgt | t(K)  | hgt |    |    |    |     |    |
| 2  | 2   | #  | 1   | -29.5   | 0.536    | -9         | -9    | -999     | 902      | 440.3    | 0.361 | 1.5   | 1      | 4.6 | 266 | 10  | 270.9 | 2   | 0  | -9 | 93 | 948 | 10 |
| 2  | 2   | #  | 2   | -40.4   | 0.733    | -9         | -9    | -999     | 1442     | 825.2    | 0.361 | 1.5   | 1      | 6.2 | 250 | 10  | 270.9 | 2   | 0  | -9 | 93 | 948 | 10 |
| 2  | 2   | #  | 3   | -37     | 0.672    | -9         | -9    | -999     | 1273     | 692.7    | 0.361 | 1.5   | 1      | 5.7 | 250 | 10  | 270.9 | 2   | 0  | -9 | 93 | 948 | 10 |
| 2  | 2   | #  | 4   | -40.4   | 0.733    |            | -9    | -999     | 1441     | 825.2    | 0.361 | 1.5   | 1      | 6.2 | 266 | 10  | 270.9 | 2   | 0  | -9 | 86 | 948 | 10 |
| 2  | 2   | #  | 5   | -37     | 0.672    | -9         | -9    | -999     | 1272     | 692.7    | 0.361 | 1.5   | 1      | 5.7 | 254 | 10  | 270.9 | 2   | 0  | -9 | 86 | 949 | 10 |
| 2  | 2   | #  | 6   | -33     | 0.598    | -9<br>-9   | -9    | -999     | 1070     | 548.4    | 0.361 | 1.5   | 1      | 5.1 | 260 | 10  | 270.9 | 2   | 0  | -9 | 86 | 950 | 10 |
| 2  | 2   | #  | 7   | -29.6   | 0.536    | -9         | -9    | -999     | 906      | 440.3    | 0.361 | 1,5   | 1      | 4.6 | 265 | 10  | 270.9 | 2   | 0  | -9 | 86 | 950 | 10 |
| 2  | 2   | #  | 8   | -37.4   | 0.734    | -9         | -9    | -999     | 1446     | 897.4    | 0.361 | 1.5   | 0.82   | 6.2 | 280 | 10  | 270.9 | 2   | 0  | -9 | 93 | 951 | 10 |
| 2  | 2   | #  | 9   | 0.1     | 0.554    | 0.011      | 0.005 | 0        | 980      | -8888    | 0.361 | 1.5   | 0.63   | 4.6 | 274 | 10  | 270.9 | 2   | 22 | -9 | 93 | 951 | 10 |
| 2  | 2   | #  | 10  | 1.2     | 0.494    | 0.058      | 0.005 | 5        | 804      | -8496.4  | 0.361 | 1.5   | 0.57   | 4.1 | 277 | 10  | 270.9 | 2   | 22 | -9 | 86 | 952 | 10 |
| 2  | 2   | #  | 11  | 8.3     | 0.557    | 0.215      | 0.005 | 40       | 956      | -1764.8  | 0.361 | 1.5   | 0.55   | 4.6 | 284 | 10  | 270.4 | 2   | 22 | -9 | 93 | 952 | 10 |
| 2  | 2   | #  | 12  | 12.8    | 0.75     | 0.328      | 0.01  | 93       | 1491     | -2804.8  | 0.361 | 1.5   | 0.54   | 6.2 | 276 | 10  | 270.4 | 2   | 22 | -9 | 93 | 953 | 10 |
| 2  | 2   | #  | 13  | 14.3    | 0.81     | 0.401      | 0.009 | 153      | 1672     | -3159.9  | 0.361 | 1.5   | 0.54   | 6.7 | 279 | 10  | 270.4 | 2   | 22 | -9 | 80 | 953 | 10 |
| 2  | 2   | #  | 14  | 12.8    | 0.5      | 0.428      | 0.005 | 206      | 913      | -828.5   | 0.361 | 1.5   | 0.54   | 4.1 | 284 | 10  | 270.4 | 2   | 22 | -9 | 80 | 953 | 10 |
| 2  | 2   | #  | 15  | 8.4     | 0.617    | 0.391      | 0.005 | 241      | 1113     | -2364.1  | 0.361 | 1.5   | 0.55   | 5.1 | 274 | 10  | 269.2 | 2   | 22 | -9 | 86 | 953 | 10 |
| 2  | 2   | #  | 16  | 1.4     | 0.434    | 0.214      | 0.006 | 246      | 686      | -5160.1  | 0.361 | 1.5   | 0.57   | 3.6 | 292 | 10  | 269.2 | 2   | 22 | -9 | 86 | 953 | 10 |
| 2  | 2   | #  | 17  | 0.1     | 0.614    | 0.09       | 0.005 | 246      | 1106     | -8888    | 0.361 | 1.5   | 0.63   | 5.1 | 293 | 10  | 269.2 | 2   | 22 | -9 | 80 | 954 | 10 |
| 2  | 2   | #  | 18  | -24.1   | 0.475    | -9         | -9    | -999     | 769      | 378.1    | 0.361 | 1.5   | 0.81   | 4.1 | 301 | 10  | 269.2 | 2   | 22 | -9 | 86 | 955 | 10 |
| 2  | 2   | #  | 19  | -22.9   | 0.409    | -9         | -9    | -999     | 606      | 255.7    | 0.361 | 1.5   | 1      | 3.6 | 308 | 10  | 269.2 | 2   | 22 | -9 | 80 | 955 | 10 |
| 2  | 2   | #  | 20  | -22.9   | 0.409    |            | -9    |          | 603      | 255.7    | 0.361 | 1.5   | 1      | 3.6 | 286 | 10  | 269.2 | 2   | 0  | -9 | 86 | 956 | 10 |
| 2  | 2   | #  | 21  | -29.9   | 0.535    | -9         | -9    | -999     | 901      | 437.4    | 0.361 | 1.5   | 1      | 4.6 | 296 | 10  | 269.2 | 2   | 22 | -9 | 80 | 956 | 10 |
| 2  | 2   | #  | 22  | -26.4   | 0.473    |            | -9    |          |          | 341      | 0.361 |       |        | 4.1 | 269 | 10  |       |     | 22 | -9 | 86 | 956 | 10 |
| 2  | 2   | #  | 23  | -30.1   | 0.535    |            | -9    | -999     | 900      | 435.5    | 0.361 | 1.5   | 1      | 4.6 | 275 | 10  | 268.1 | 2   | 0  | -9 | 86 | 956 | 10 |
| 2  | 2   | #  | 24  | -26.6   | 0.473    | -9         | -9    | -999     | 751      | 338      | 0.361 |       |        | 4.1 | 257 | 10  | 267   | 2   | 0  | -9 | 86 | 956 | 10 |

| Syr | acı      | ıse  | 199    | 2                                       |                                         | S        |                                         |              |                 | impactin  | g wind                                  | directi | on = 110 | 0      |         |       |                |         |       |                                           |          |     |
|-----|----------|------|--------|-----------------------------------------|-----------------------------------------|----------|-----------------------------------------|--------------|-----------------|-----------|-----------------------------------------|---------|----------|--------|---------|-------|----------------|---------|-------|-------------------------------------------|----------|-----|
| Y   | M        | D    | H      | ht flux                                 | fric vel                                | conv vel | ptg                                     | conv mix     | mech mix        | M-O       | rough                                   | Bowen   | albedo   | spd    | dir     | hgt   | t(K)           | hgt     |       |                                           |          |     |
| 92  | 1        | 27   | 1      | -9.7                                    | 0.157                                   | -9       | -9                                      | -999         | 146             | 36        | 0.34                                    | 1.54    | 1        | 1.5    | 111     | 6.4   | 258.1          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 32  | 1        | 27   | 2      | -24.9                                   | 0.404                                   | -9       | -9                                      | -999         | 591             | 239.3     | 0.34                                    | 1.54    | 1        | 3.1    | 112     | 6.4   | 258.8          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 2   | 1        | 27   | 3      | -15.8                                   | 0.257                                   | -9       | -9                                      | -999         | 313             | 97.3      | 0.34                                    | 1.54    | 1        | 2.1    | 91      | 6.4   | 259.2          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 92  | 1        | 27   | 4      | -31.8                                   | 0.316                                   | -9       | -9                                      | -999         | 408             | 89.6      | 0.34                                    | 1.54    | 1        | 2.6    | 111     | 6.4   | 259.9          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 12  | 1        | 27   | 5      | -33.2                                   | 0.357                                   | -9       | -9                                      | -999         | 491             | 124       | 0.45                                    | 1.5     | 1        | 2.6    | 88      | 6.4   | 259.2          | 2       | 0 -   | 9 999                                     | 1013     | ,   |
| 12  | 1        | 27   | 6      | -33.1                                   | 0.397                                   | -9       | -9                                      | -999         | 575             | 171.1     | 0.34                                    | 1.54    | 1        | 3.1    | 111     | 6.4   | 260.4          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 2   | 1        | 27   | 7      | -29.1                                   | 0.401                                   | -9       | -9                                      | -999         | 583             | 199.3     | 0.34                                    | 1.54    | 1        | 3.1    | 97      | 6.4   | 260.9          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 12  | 1        | 27   | 8      | -20.2                                   | 0.332                                   | -9       | -9                                      | -999         | 443             | 163.9     | 0.34                                    | 1.54    | 1        | 2.6    | 100     | 6.4   | 262            | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 2   | 1        | 27   | 9      | -17.4                                   | 0.482                                   | -9       | -9                                      | -999         | 768             | 578.3     | 0.34                                    | 1.54    | 0.71     | 3.6    | 111     | 6.4   | 262.5          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 32  | 1        | 27   | 10     | 0.1                                     | 0.559                                   | 0.012    | 0.018                                   | 1            | 960             | -8888     | 0.34                                    | 1.54    | 0.6      | 4.1    | 112     | 6.4   | 264.9          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 2   | 1        | 27   | 11     | 1.1                                     | 0.559                                   | 0.063    | 0.018                                   | 8            | 961             | -8888     | 0.34                                    | 1.54    | 0.56     | 4.1    | 103     | 6.4   | 266.4          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 32  | 1        | 27   | 12     | 6.1                                     | 0.769                                   | 0.198    | 0.005                                   | 46           | 1550            | -6769.9   | 0.45                                    | 1.5     | 0.53     | 5.1    | 80      | 6.4   | 267.5          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 92  | 1        | 27   | 13     | 59.3                                    | 0.704                                   | 0.74     | 0.006                                   | 246          | 1367            | -531.8    | 0.45                                    | 1.5     | 0.53     | 4.6    | 76      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 32  | 1        | 27   | 14     | 51.9                                    | 0.865                                   | 0.815    | 0.005                                   | 377          | 1847            | -1128.1   | 0.45                                    | 1.5     | 0.53     | 5.7    | 77      | 6.4   | 269.9          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 12  | 1        | 27   | 15     | 0.1                                     | 0.559                                   | 0.102    | 0.009                                   | 378          | 1061            | -8888     | 0.34                                    | 1.54    | 0.57     | 4.1    | 94      | 6.4   | 270.4          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 12  | 1        | 27   | 16     | 7.1                                     | 0.62                                    | 0.426    | 0.008                                   | 395          | 1121            | -3047.4   | 0.45                                    | 1.5     | 0.6      | 4.1    | 86      | 6.4   | 269.9          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 12  | 1        | 27   | 17     | -34.9                                   | 0.472                                   | -9       | -9                                      | -999         | 763             | 272       | 0.34                                    | 1.54    | 0.75     | 3.6    | 98      | 6.4   | 269.9          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 2   | 1        | 27   | 18     | -32.4                                   | 0.546                                   | -9       | -9                                      | -999         | 926             | 453.3     | 0.34                                    | 1.54    | 1        | 4.1    | 111     | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     | ,   |
| 2   | 1        | 27   | 19     | -26.7                                   | 0.449                                   | -9       | -9                                      | -999         | 700             | 307.6     | 0.45                                    | 1.5     | 1        | 3.1    | 76      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     | 5   |
| 12  | 1        | 27   | 20     | -19.8                                   | 0.333                                   | -9       | -9                                      | -999         | 450             | 168.6     | 0.34                                    | 1.54    | 1        | 2.6    | 96      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 12  | 1        | 27   | 21     | -24                                     | 0.405                                   | -9       | -9                                      | -999         | 592             | 249.5     | 0.34                                    | 1.54    | 1        | 3.1    | 108     | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     | 1   |
| 2   | 1        | 27   | 22     | -19.8                                   | 0.333                                   | -9       | -9                                      | -999         | 444             | 168.6     | 0.34                                    | 1.54    | 1        | 2.6    | 91      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     | •   |
| 32  | 1        | 27   | 23     | -19.8                                   | 0.333                                   | -9       | -9                                      | -999         | 442             | 168.6     | 0.34                                    | 1.54    | 1        | 2.6    | 96      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     |     |
| 92  | 1        | 27   | 24     | -22                                     | 0.37                                    | -9       | -9                                      | -999         | 518             | 208.8     | 0.45                                    | 1.5     | 1        | 2.6    | 76      | 6.4   | 268.8          | 2       | 0 -   | 9 999                                     | 1013     |     |
|     |          |      |        |                                         | npact fo                                | r case 3 | (hs=1                                   | Oft, barn,   | JHW) - max      |           |                                         |         |          |        |         |       |                |         |       |                                           |          |     |
| 200 | nes<br>M | 9.00 | 120,65 | 002                                     | fela uni                                | nonu vol | nto                                     | manage and a | month mile      | impactin  | Section 1997                            |         |          |        | Salt of | to at | errer.         | No.     |       |                                           |          |     |
|     | 9        | 1    | 1      |                                         |                                         | conv vel | -9                                      |              | mech mix<br>730 | M-O       | DODGE STATE                             |         | albedo   |        | dir     | hgt   | 1(K)           | hgt     | 6     | . 70                                      | 007      |     |
| 2   | 9        | 1    | 2      | -47.5<br>-55.7                          |                                         | -9<br>-9 | -9                                      | -999<br>-999 |                 |           | 0.555                                   | 2       |          | 2000   | 170     | 10    | 289.2<br>288.1 | 7 377.0 | 0 -   | D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |          |     |
| 2   | 9        | 1    | 3      | -47.8                                   | 0.527                                   | -9       | -9                                      | -999         | 3537            |           | 0.555                                   | 2       |          | 3,975  | 168     | 10    | 287            | 2       | 0 -   | nochia.                                   |          |     |
| 2   | 9        | 4    | 4      | -15.3                                   |                                         | -9       | -9                                      | -999         | 9776            | 101715000 | 0.555                                   |         |          | 772500 | CONTRA  | 10    | 287            |         | 47000 | 하네 보이다                                    | 00000    |     |
|     | 9        | 1    | 5      | -7.8                                    | 0.143                                   | -9       | -9                                      |              | 4 170000        | 2.5532    |                                         | 2       |          |        | 168     |       |                |         | (57XX |                                           |          |     |
| 2   | 9        | 1    | 6      | -15.4                                   |                                         | -9       | -9                                      | -999         |                 |           | 0.555                                   | 2       |          | 1.5    | 154     | 10    | 285.9          |         | 0 -   |                                           | 33452    |     |
| 2   | 9        | 1    | 7      | -15.4                                   | 0.145                                   | -9       | -9                                      | -999         |                 |           | 0.555                                   | 2       |          |        | 168     | 10    | 285.9          |         | 0 -   | 50 H KW 588                               | 1897.5   | 200 |
| 2   | 9        | 1    | 8      | 84.2                                    | 110000000000000000000000000000000000000 | 0.834    | 0.005                                   | -999         |                 | 10000000  | 0.555                                   | 100     |          | 2.6    |         | 10    | 287            | 0.775   | 0 -   | 5100077                                   | CRASS    |     |
| 2   | 9        | 1    | 9      | 168                                     |                                         | 1.304    | 0.005                                   | 237          |                 | -393.1    |                                         | 2       |          |        |         | 10    | 289.2          | 5 1654  | 0 -   |                                           |          |     |
| 2   | 9        | 1    | 10     | 237.2                                   |                                         | 1.751    | 0.005                                   | 455<br>781   |                 | -210.6    |                                         | 2       |          | 77.55  | 184     | 10    | 290.4          | 2       | 0 -   |                                           | 1 100000 |     |
| 2   | 9        | 1    | -35    | 274.6                                   |                                         | 2.048    |                                         |              |                 | -119.8    | 100000000000000000000000000000000000000 | 2       |          | 12233  | 186     | 10    |                | 970     | 0 -   | 2000                                      | 500000   |     |
| 2   | 9        | 1    | 917    | - 5500 253                              |                                         |          | 11000000                                | 1078         |                 | 100000000 | 0.555                                   | 2       |          |        | 202     | 10    |                | 0.0750  | 0 -   | 5) U 10-585                               | 17777    |     |
| 2   | 9        | 1    | 70857  | 100000000000000000000000000000000000000 |                                         | 1.749    |                                         | 1195         | 100000000       | 0.5050    | 0.555                                   | 2       |          |        | 144     | 10    | 294.2          | 2       | 0 -   |                                           |          |     |
| 2   | 9        | 1    |        |                                         | 0.818                                   | 1.799    | 0.006                                   | 1271         |                 | -169.5    |                                         | 2       |          |        | 161     | 10    | 294.9          | V 1     | 0 -   | 2070577                                   | 0.00     |     |
| 2   | 3575     | 50%  | 1208   |                                         |                                         | 00000000 | 0.0000000000000000000000000000000000000 | 1343         | 0.000           | -312.7    |                                         | 2       |          | 175000 | 183     | 10    |                | 2       | 0 -   |                                           | 1 150 AC |     |
| 4   | 9        | 33.  | 15     | 132.4                                   | 0.881                                   | 1./55    | 0.005                                   | 1404         | 1897            | -443.3    | 0.555                                   | 2       | 0.15     | 0.2    | 178     | 10    | 295.4          | 2       | 0 -   | 9 61                                      | 962      | 1   |

-689.3 0.555

-128.2 0.555

-347.8 0.555

-99999 0.555

-99999 0.555

167.7 0.555

240.2 0.555

306.1 0.555

780.9 0.555

0.16 6.7 188

0.19 3.1 168

0.57

57 0 0 1 0 0

1 3.6 159

0.28 4.1 171 10 293.1

1 4.1 183 10 289.2

10 295.4

10 293.1

10 290.9

10 290.4

10 290.4

1 3.6 182 10 289.2 2 0 -9 88

1 5.1 166 10 289.2 2 0 -9 88 960 10

2 0 -9 61

69

69

78

83 961 0

83 961 0

88

2 0 -9

20-9

20-9

20-9

2 0 -9

20-9

9

962

962 9

961 5

961 0

961 3

961 9

2

2

2

2

2

2

2

2

2

2 9 1 16 104.5 0.944

2 9 1 22 -52.9 0.529

2 9 1 23 -29.3 0.471

66.7 0.464

49.7 0.587

-9

-9

0.69

-999

-999

1 21 -47.1 0.452

2 9 1 17

1 19

1 20

2 9 1 24 -36.1

2 9 1 18

2 9

2 9

2 9

1.64 0.008

1.419 0.005

1.293 0.005

-9

-9

-9

-9

-9

-9

-9

-9

-9

-9

-9

-9

1448

1471

1492

-999

-999

-999

-999

-999

-999

2102

1007

1033

-999

-999

698

885

748

1319